ECE 111 - Homework \#12

Week \#12: ECE 341 Random Processes. Due Tuesday, April 11th
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Chi-Squared Tests

Problem 1: The following Matlab code generates 90 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:90
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

Problem 2: The following Matlab code generates 90 rolls of a loaded six-sided die (12% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:90
    if(rand < 0.12)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

Am I Psychic?

Problem \#3: Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

Monte-Carlo Simulation

Problem \#4: Let y be the sum of six 4 -sided dice plus five 6 -sided dice plus four 8 -sided dice

$$
y=6 d 4+5 d 6+4 d 8
$$

a) Generate 100,000 values for y using Matlab and plot the frequency of each number on a bar chart
b) From your results, determine the probability that $\mathrm{y}>59.5$ (the number of times the sum is more than 59.5)
c) From your results, determine 'a' such that $y<a 5 \%$ of the time
d) From your results, determine 'b' such that $\mathrm{y}>\mathrm{b} 5 \%$ of the time

Note: the 90% confidence interval for y is $\mathrm{a}<\mathrm{y}<\mathrm{b}$.

```
RESULT = zeros(90,1);
```

```
for i=1:1e5
    d4 = ceil( 4*rand(6,1) );
    d6 = ceil( 6*rand(5,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    RESULT(Y) = RESULT(Y) + 1;
    end;
bar(RESULT)
sum(RESULT(70:90)) / 1e5
```


Normal Approximation

The mean and standard deviation for a fair 6 -sided die and 4 -sided die are:
$\mu_{d 4}=2.5$
$\mu_{d 6}=3.5$
$\mu_{d 8}=4.5$
$\sigma_{d 4}=1.118$
$\sigma_{d 6}=1.7078$
$\sigma_{d 10}=2.2913$

Problem 5: Let Y be the sum of rolling six 4 -sided dice (6 d 4) plus five 6 -sided dice (5d6) plus four 8 -sided dice.

$$
\mathrm{Y}=6 \mathrm{~d} 4+5 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?
b) Using a normal approximation, what is the 90% confidence interval for Y ?
c) Using a normal approximation, what is the probability that the sum the dice will be more than 59.5 ?

Student-t Test

Problem 6: Using Matlab, determine four values for Y

$$
\mathrm{Y}=6 \mathrm{~d} 4+5 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

6a) From this, determine the mean and standard deviation of your data set.

```
DATA = [];
for i=1:4
    d4 = ceil( 4*rand(6,1) );
    d6 = ceil( 6*rand(5,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    DATA = [DATA, Y];
    end
x = mean(DATA)
s = std(DATA)
```

6b) Use a t-test to determine

- The 90% confidence interval
- The probabillity of scoring more than 59.5 points

Problem 7: Using Matlab, determine ten values for Y

$$
\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

7a) From this, determine the mean and standard deviation of your data set.
7b) Use a t-test to determine

- The 90% confidence interval
- The probabillity of scoring more than 59.5 points

