ECE 111 - Homework \#2

Week \#2: Matlab and Trigonometry. Due Tuesday, January 24th Please submit as a hard copy or submit on BlackBoard

Plot the following functions in Matlab

1) $r=\cos (\theta+1)$
```
q = [0:0.01:1]' * 2*pi;
r = cos(q + 1);
x = r .* cos(q);
y = r .* sin(q);
plot(x,y)
```

2) $r=\sqrt{\theta}$
3) $r=\sin (2 \theta) \cdot \cos (3 \theta)$

$f(x)=0$: Newton's Method

4) Use Newton's method to find the solutions to problem \#3 for homework set \#1

$$
\begin{aligned}
& y=\left(\frac{\sin (x)}{x^{2}+1}\right) \\
& y=\cos (x)
\end{aligned}
$$

or

$$
f(x)=\left(\frac{\sin (x)}{x^{2}+1}\right)-\cos (x)=0
$$

5) Use Newton's method to find the solutions to problem \#4 for homework set \#1

$$
\begin{aligned}
& y=\frac{1}{4} \exp \left(\frac{x}{2}\right)=\frac{1}{4} e^{x / 2} \\
& y=\sin (2 x)
\end{aligned}
$$

or

$$
f(x)=\frac{1}{4} \exp \left(\frac{x}{2}\right)-\sin (2 x)=0
$$

$f(x)=0$: Shoot Game:

Pick a random number from 50 to 100 for your target.
Pick a random number from 30 to 70 for your firing angle
6) Use trial and error to find the initial velocity (X) to fire a tennis ball to hit the target (result is zero)

```
>> Target = 50*rand + 50
Target = 90.7362
>> Angle = 50*rand + 20
Angle = 65.2896
>> Shoot(30, Angle, Target)
ans = 30.6515
>> Shoot(50, Angle, Target)
ans = -28.2262
>> Shoot(40, Angle, Target)
ans = -0.9533
```

7) Repeat using Newton's method to find the initial velocity (X) to fire the tenis ball to hit the target >> X1 = 30;
>> Y1 = Shoot (X1, Angle,
Target)
$\mathrm{Y} 1=30.6515$
>> $\mathrm{X} 2=35$;
>> Y2 = Shoot (X2, Angle,
Target)
$\mathrm{Y} 2=14.5376$
$\gg X 3=X 2-(X 2-X 1) /(Y 2-Y 1) * Y 2$
$\mathrm{X} 3=39.5109$
>> Y3 = Shoot (X3, Angle,
Target)
$\mathrm{Y} 3=0.5175$
$\gg X 4=X 3-(X 3-X 2) /(Y 3-Y 2) * Y 3$
$\mathrm{X} 4=39.6774$
>> Y4 $=$ Shoot (X4, Angle,

Target)
$\mathrm{Y} 4=0.0156$
