ECE 111 - Homework \#1

Week \#1: Algebra. Due Tuesday, January 17th
Please submit as a hard copy or a Word /pdf file submitted via BlackBoard or email with header ECE 111 HWxx

functions poly and roots:

1) Use MATLAB, find the roots the the following polynomials:
a) $x^{3}-9 x^{2}-49 x+441=0$
b) $x^{4}-85 x^{2}-60 x+864=0$
c) $x^{5}-25 x^{4}+144 x^{3}+680 x^{2}-6800 x+6000=0$
2) Use Matlab to multiply out the following polynomials.
a) $y=(x)(x-10)(x+7)(x-7)$
b) $y=(x+9)(x+1)(x-4)(x-6)(x-9)(x-10)$

Graphing in Matlab

3) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=\left(\frac{\sin (x)}{x^{2}+1}\right) \\
& y=\cos (x)
\end{aligned}
$$

4) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=\frac{1}{4} \exp \left(\frac{x}{2}\right)=\frac{1}{4} e^{x / 2} \\
& y=\sin (2 x)
\end{aligned}
$$

Monte-Carlo Simulations:

Two teams, A and B , are playing a game. Team A has a

- 25% chance of winning any given game (+1 point)
- 30% chance of a tie ($+1 / 2$ point), and
- 45% chance of a loss (+0 points)

5) For Loops: Suppose the two teams play a 5 -game match. Determine the probability that

- Team A wins the match (A has more than 2.5 points),
- There is a tie (A has 2.5 points), and
- Team A loses (A has less than 2.5 points)

6) While Loops: Suppose the two teams play until one team is up by 2 points. Determine the probability that team A will win the match.
hint: use a while-loop and keep looping until one team is up by 2 games.
7) Gauss' Dilema: Play the following game 1000 times. (i.e. use Matlab and a for loop along with a while loop)

- It costs $\$ 20$ to play. The pot starts at $\$ 1$.
- Flip a coin. If you get a heads, the pot doubles. If you get a tails, the game is over and you collect the money in the pot.
- Keep flipping until you get a tails.

How much money do you expect to win (or lose) each time you play this game?

Dice:

8a) Determine the probability distribution for the following:

- Roll three 4 -sided dice, four 6 -sided dice, and five 8 -sided dice.
- The total is the sum of all of the dice.

$$
\mathrm{Y}=3 \mathrm{~d} 4+4 \mathrm{~d} 6+5 \mathrm{~d} 8
$$

$8 \mathrm{~b})$ What is the probability of the total being 50 ?
$8 \mathrm{c})$ What is the probability of the total being 50 or more?
9) Two people are playing a dice game:

- Player A rolls three 4-sided dice, four 6-sided dice, and five 8 -sided dice
- Player B rolls two 100 -sided dice.
- Whoever has the highest total wins.

Determine the probability that

- A wins
- There is a tie, and
- B wins

