# ECE 111 - Homework #12

Week #12: ECE 341 Random Processes. Due 8am April 12th

Please submit as a Word or pdf file to BlackBoard or email to Jacob\_Glower@yahoo.com with header ECE 111 HW#12

www.BisonAcademy.com

# **Chi-Squared Tests**

Problem 1: The following Matlab code generates 60 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:60
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

RESULT =

11 7 9 7 14 12

| Roll | р   | n*p | Ν     | $\chi^2 = \left(\frac{(np-N)^2}{np}\right)$ |
|------|-----|-----|-------|---------------------------------------------|
| 1    | 1/6 | 10  | 11    | 0.1                                         |
| 2    | 1/6 | 10  | 7     | 0.9                                         |
| 3    | 1/6 | 10  | 9     | 0.1                                         |
| 4    | 1/6 | 10  | 7     | 0.9                                         |
| 5    | 1/6 | 10  | 14    | 1.6                                         |
| 6    | 1/6 | 10  | 12    | 0.4                                         |
|      |     |     | Total | 4                                           |

Put this into a table and compute the Chi-Squred score

From StatTrek, a chi-squared score of 4.00 with 5 degrees of freedom corresponds to a probability of 0.45

## There is a 45% chance that this die is not fair

| rmer a value for degrees of freedom.                                          |                      |          |
|-------------------------------------------------------------------------------|----------------------|----------|
| Enter a value for one, and only one, of th                                    | e remaining unshad   | led text |
| poxes.                                                                        |                      |          |
| Click the <b>Calculate</b> button to compute vi                               | lues for the other t | ext boxe |
|                                                                               |                      |          |
|                                                                               |                      |          |
| Degrees of freedom                                                            | 5                    |          |
| Degrees of freedom                                                            | 5                    |          |
| Degrees of freedom<br>Chi-square critical value (CV)<br>P(X <sup>2</sup> < 4) | 5<br>4<br>0.45       |          |

**Problem 2:** The following Matlab code generates 60 rolls of a loaded six-sided die (20% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:60
    if(rand < 0.2)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

RESULT = 15 6 9 6 6 18

| Roll | р   | n*p | N     | $\chi^2 = \left(\frac{(np-N)^2}{np}\right)$ |
|------|-----|-----|-------|---------------------------------------------|
| 1    | 1/6 | 10  | 15    | 2.5                                         |
| 2    | 1/6 | 10  | 6     | 1.6                                         |
| 3    | 1/6 | 10  | 9     | 0.1                                         |
| 4    | 1/6 | 10  | 6     | 1.6                                         |
| 5    | 1/6 | 10  | 6     | 1.6                                         |
| 6    | 1/6 | 10  | 18    | 6.4                                         |
|      |     |     | Total | 13.8                                        |

Place the data in to a table and compute the chi-squared score:

From StatTrek, a chi-squared score of 13.8 with 5 degrees of freedom corresponds to a probability of 0.98

## There is a 98.0% chance that this die is not fair

| Enter a value for degrees of freedom.                                            |                      |          |
|----------------------------------------------------------------------------------|----------------------|----------|
| Enter a value for one, and only one, of the boxes.                               | e remaining unshad   | led text |
| Click the Calculate button to compute va                                         | lues for the other t | ext box  |
|                                                                                  |                      |          |
|                                                                                  |                      |          |
| Degrees of freedom                                                               | 5                    |          |
| Degrees of freedom<br>Chi-square critical value (CV)                             | 5                    |          |
| Degrees of freedom<br>Chi-square critical value (CV)<br>P(X <sup>2</sup> < 13.8) | 5                    |          |

# Am I Psychic?

**Problem #3:** Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

Flipping throgh a deck of cards and predicting the suit, I was

- Correct 19 times
- Incorrect 33 times

Put this data into a table and compute the chi-squared score

| Pediction | р   | n*p | Ν     | $\chi^2 = \left(\frac{(np-N)^2}{np}\right)$ |
|-----------|-----|-----|-------|---------------------------------------------|
| Correct   | 1/4 | 13  | 19    | 2.77                                        |
| Incorrect | 3/4 | 39  | 33    | 0.92                                        |
|           |     |     | Total | 3.69                                        |

From StatTrek, a chi-squared score of 3.69 with 1 degree of freedom corresponds to a probabiliy of 0.95

## There is 95% chance that I wasn't just guessing

and a 5% chance I got lucky... before I mortgage the house and go to the cassino, I might want to repeat this test to see if the result is repeatable

| <ul> <li>Enter a value for degrees of freedom.</li> <li>Enter a value for one, and only one, of the boxes.</li> <li>Click the <b>Calculate</b> button to compute value of the boxes.</li> </ul> | e remaining unshaded<br>lues for the other text | l text<br>t boxes. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|
| Degrees of freedom                                                                                                                                                                              | 1                                               |                    |
| Chi-square critical value (CV)                                                                                                                                                                  | 3.69                                            |                    |
| P(X <sup>2</sup> < 3.69)                                                                                                                                                                        | 0.95                                            |                    |
| P(X <sup>2</sup> > 3.69)                                                                                                                                                                        | 0.05                                            |                    |

# **Normal Approximation**

The mean and standard deviation for a fair 6-sided die and 4-sided die are:

$$\mu_{d6} = 3.5 \qquad \qquad \mu_{d4} = 2.5 \\ \sigma_{d6} = 1.7078 \qquad \qquad \sigma_{d4} = 1.118$$

Problem 4: Let Y be the sum of rolling three 6-sided dice (3d6) plus four 4-sided dice (4d4).

Y = 3d6 + 4d4

a) What is the mean and standard deviation of Y?

When adding normal distributions

- The mean adds
- $\mu = 3 \cdot \mu_{d6} + 4 \cdot \mu_{d4}$  $\mu = 3 \cdot 3.5 + 4 \cdot 2.5$  $\mu = 20.5$  The variance adds

$$\sigma^{2} = 3 \cdot \sigma_{d6}^{2} + 4 \cdot \sigma_{d4}^{2}$$
  

$$\sigma^{2} = 3(1.7078)^{2} + 4(1.118)^{2}$$
  

$$\sigma^{2} = 13.7494$$
  

$$\sigma = 3.7080$$

The normal approximation for the sum of the die rolls is then (not asked for in the homework but informative)

```
>> s = [-4:0.01:4]';
>> p = exp(-s.^2 / 2);
>> plot(s*3.7080 + 20.5,p)
>> xlabel('Sum of Dice')
```



Probability Distribution for the Sum of Dice

## b) Using a normal approximation, what is the 90% confidence interval for Y?

From StatTrek, 5% tails with a uniform distribution corresponds to a z-score of 1.645

$$\mu - 1.645\sigma < roll < \mu + 1.645\sigma$$
  $p = 0.9$   
14.400 < roll < 26.60



90% Condidence Interval for the sum of dice. Each tail has an area of 5%

c) Using a normal approximation, what is the probability that the sum the dice will be more than 24.5?

The z-score corresponding to 24.5 is

$$z = \left(\frac{24.5 - \mu}{\sigma}\right) = \left(\frac{24.5 - 20.5}{3.7080}\right) = 1.0787$$

From StatTrek, a z-score of 1,.0787 corresponds to a probability of 0.140

#### There is a 14.0% chance that the sum will be more than 24.5





The area to the right of 24.5 is 14.0%

Problem 5: Check your answer using a Monte-Carlo simulation in Matlab with one million rolls:

```
N = 0;
for i=1:1e6
  Y = sum( ceil( 6*rand(3,1) ) ) + sum( ceil( 4*rand(4,1) ) );
  if(Y > 24.5)
     N = N + 1;
     end
  end
  N / 1e6
```

# ans = 0.1437

With one million rolls, 14.37% of the rolls were 25 or higher.

• A normal approximation gave a 14.0% chance

Note:

- The normal approximation is approximately correct
- This is only the sum of seven dice. If the number of dice increases, the normal approximation becomes more accurate.
- It is a lot easier to use a normal approximation than it is to roll dice one million times

# t-Tests

Problem 6: Using Matlab, cast six level-10 fireballs (the sum of ten 6-sided dice, or 10d6)

```
damage = [];
for i=1:6
  x = sum( ceil( 6*rand(10,1) ) );
  damage = [damage , x];
  end
damage
  37 35 40 35 41 32
```

From this, determine the mean and standard deviation of your data set.

```
>> x = mean(damage)
x = 36.6667
>> s = std(damage)
s = 3.3862
```

Just for fun, the probability distribution for a level-10 fireball is then

```
>> s1 = [-4:0.01:4]';
>> p = exp(-s1.^2 / 2);
>> plot(s*s1 + x,p)
>> xlabel('sum of 10d6')
```



Probability Distribution for the sum of 10d6 (level-10 fireball)

## Problem 7: Use a t-test to determine

## The 90% confidence interval for a level 10 fireball.

The t-score that corresponds to 5% tails with 5 degrees of freedom (sample size = 6) is 2.015



The 90% confidence interval is then

 $\bar{x} - 2.015s < roll < \bar{x} + 2.015s$ 29.84 < roll < 43.49



90% confidence interval for a level-10 fireball

# The probabillity of doing 45 or more damage with a level-10 fireball

The t-score for 44.5 (rounded to 45) is

$$t = \left(\frac{44.5 - \bar{x}}{s}\right) = 2.3133$$

From StatTrek, this corresponds to a probability of 3.43%

| Random variable             | t score                | ~ |
|-----------------------------|------------------------|---|
| Degrees of freedom 5        |                        |   |
| t score                     | -2 <mark>.</mark> 3133 |   |
| Probability: P(T < -2.3133) | 0.0343                 |   |

Problem 8) Check your answer using a Monte-Carlo simulation in Matlab by casting 100,000 level-10 fireballs:

```
N = 0;
for i=1:1e6
    damage = sum( ceil( 6*rand(10,1) ) );
    if( damage >= 45)
        N = N + 1;
        end
    end
N / 1e6
```

#### ans = 0.0387

From a Monte-Carlo simulation, there is a 3.87% chance of rolling 45 or more

• A t-test predicts 3.43% predicted with a t-test

Note:

- You don't need a very large sample size to get pretty good estimates
- If you know the mean and standard deviation, use a normal appproximation
- If you estimate the mean and standard deviation from the data, use a t-test