ECE 111 - Homework \#12

Week \#12: ECE 341 Random Processes. Due 8am April 12th
Please submit as a Word or pdf file to BlackBoard or email to Jacob_Glower@yahoo.com with header ECE 111 HW\#12 www.BisonAcademy.com

Chi-Squared Tests

Problem 1: The following Matlab code generates 60 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:60
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULI
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

RESULT =

11	7	9	7	14	12

Put this into a table and compute the Chi-Squred score

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	10	11	0.1
2	$1 / 6$	10	7	0.9
3	$1 / 6$	10	9	0.1
4	$1 / 6$	10	7	0.9
5	$1 / 6$	10	14	1.6
6	$1 / 6$	10	12	0.4
			Total	4

From StatTrek, a chi-squared score of 4.00 with 5 degrees of freedom corresponds to a probability of 0.45
There is a 45\% chance that this die is not fair

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	5
Chi-square critical value (CV)	4
$\mathrm{P}\left(\mathrm{X}^{2}<4\right)$	0.45
$\mathrm{P}\left(\mathrm{X}^{2}>4\right)$	0.55

Problem 2: The following Matlab code generates 60 rolls of a loaded six-sided die (20% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:60
    if(rand < 0.2)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

```
RESULT = 15 lllllll
```

Place the data in to a table and compute the chi-squared score:

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	10	15	2.5
2	$1 / 6$	10	6	1.6
3	$1 / 6$	10	9	0.1
4	$1 / 6$	10	6	1.6
5	$1 / 6$	10	6	1.6
6	$1 / 6$	10	18	6.4
			Total	13.8

From StatTrek, a chi-squared score of 13.8 with 5 degrees of freedom corresponds to a probability of 0.98
There is a $\mathbf{9 8 . 0 \%}$ chance that this die is not fair

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	5
Chi-square critical value (CV)	$\square 13.8$
$P\left(X^{2}<13.8\right)$	0.98
$P\left(X^{2}>13.8\right)$	0.02

Am I Psychic?

Problem \#3: Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

Flipping throgh a deck of cards and predicting the suit, I was

- Correct 19 times
- Incorrect 33 times

Put this data into a table and compute the chi-squared score

Pediction	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
Correct	$1 / 4$	13	19	2.77
Incorrect	$3 / 4$	39	33	0.92
			Total	3.69

From StatTrek, a chi-squared score of 3.69 with 1 degree of freedom corresponds to a probabiliy of 0.95

There is $\mathbf{9 5 \%}$ chance that I wasn't just guessing

and a 5% chance I got lucky... before I mortgage the house and go to the cassino, I might want to repeat this test to see if the result is repeatable

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	1
Chi-square critical value (CV)	3.69
$\mathrm{P}\left(\mathrm{X}^{2}<3.69\right)$	0.95
$\mathrm{P}\left(\mathrm{X}^{2}>3.69\right)$	0.05

Normal Approximation

The mean and standard deviation for a fair 6 -sided die and 4 -sided die are:

$$
\begin{array}{ll}
\mu_{d 6}=3.5 & \mu_{d 4}=2.5 \\
\sigma_{d 6}=1.7078 & \sigma_{d 4}=1.118
\end{array}
$$

Problem 4: Let Y be the sum of rolling three 6 -sided dice (3d6) plus four 4-sided dice (4d4).

$$
\mathrm{Y}=3 \mathrm{~d} 6+4 \mathrm{~d} 4
$$

a) What is the mean and standard deviation of Y ?

When adding normal distributions

- The mean adds

$$
\begin{aligned}
\mu & =3 \cdot \mu_{d 6}+4 \cdot \mu_{d 4} \\
\mu & =3 \cdot 3.5+4 \cdot 2.5 \\
\mu & =20.5
\end{aligned}
$$

- The variance adds

$$
\begin{aligned}
& \sigma^{2}=3 \cdot \sigma_{d 6}^{2}+4 \cdot \sigma_{d 4}^{2} \\
& \sigma^{2}=3(1.7078)^{2}+4(1.118)^{2} \\
& \sigma^{2}=13.7494 \\
& \sigma=3.7080
\end{aligned}
$$

The normal approximation for the sum of the die rolls is then (not asked for in the homework but informative)

```
>> s = [-4:0.01:4]';
>> p = exp(-s.^2 / 2);
>> plot(s*3.7080 + 20.5,p)
>> xlabel('Sum of Dice')
```


b) Using a normal approximation, what is the 90% confidence interval for Y ?

From StatTrek, 5% tails with a uniform distribution corresponds to a z-score of 1.645

$$
\begin{array}{ll}
\mu-1.645 \sigma<\text { roll }<\mu+1.645 \sigma & \mathrm{p}=0.9 \\
14.400<\text { roll }<26.60 &
\end{array}
$$

90% Condidence Interval for the sum of dice. Each tail has an area of 5\%
c) Using a normal approximation, what is the probability that the sum the dice will be more than 24.5 ?

The z -score corresponding to 24.5 is

$$
z=\left(\frac{24.5-\mu}{\sigma}\right)=\left(\frac{24.5-20.5}{3.7080}\right)=1.0787
$$

From StatTrek, a z-score of $1, .0787$ corresponds to a probability of 0.140
There is a $\mathbf{1 4 . 0} \%$ chance that the sum will be more than 24.5

- Enter a value in three of the four text boxes.
- Leave the fourth text box blank.
- Click the Calculate button to compute a value for the blank text box.

Standard score (z)	
Cumulative probability: $\mathrm{P}(\mathrm{Z} \leq$	$\square-1.0787$
$-1.0787)$	0.140
Mean	$\square 0$
Standard deviation	\square

The area to the right of $\mathbf{2 4 . 5}$ is $\mathbf{1 4 . 0 \%}$

Problem 5: Check your answer using a Monte-Carlo simulation in Matlab with one million rolls:

```
N = 0;
for i=1:1e6
    Y = sum( ceil( 6*rand(3,1) ) ) + sum( ceil( 4*rand(4,1) ) );
    if(Y > 24.5)
        N = N + 1;
        end
    end
N / 1e6
```


ans $=0.1437$

With one million rolls, 14.37% of the rolls were 25 or higher.

- A normal approximation gave a 14.0% chance

Note:

- The normal approximation is approximately correct
- This is only the sum of seven dice. If the number of dice increases, the normal approximation becomes more accurate.
- It is a lot easier to use a normal approximation than it is to roll dice one million times

t-Tests

Problem 6: Using Matlab, cast six level-10 fireballs (the sum of ten 6-sided dice, or 10d6)

```
damage = [];
for i=1:6
    x = sum( ceil( 6*rand(10,1) ) );
    damage = [damage , x];
    end
damage
    37
```

From this, determine the mean and standard deviation of your data set.

```
>> x = mean(damage)
x = 36.6667
>> s = std(damage)
s = 3.3862
```

Just for fun, the probability distribution for a level-10 fireball is then

```
>> s1 = [-4:0.01:4]';
>> p = exp(-s1.^2 / 2);
>> plot(s*s1 + x,p)
>> xlabel('sum of 10d6')
```


Problem 7: Use a t-test to determine
The $\mathbf{9 0 \%}$ confidence interval for a level 10 fireball.
The t-score that corresponds to 5% tails with 5 degrees of freedom (sample size $=6$) is 2.015

The 90% confidence interval is then

$$
\bar{x}-2.015 s<\operatorname{roll}<\bar{x}+2.015 s
$$

$29.84<$ roll <43.49

90% confidence interval for a level-10 fireball

The probabillity of doing 45 or more damage with a level- 10 fireball
The t-score for 44.5 (rounded to 45) is

$$
t=\left(\frac{44.5-\bar{x}}{s}\right)=2.3133
$$

From StatTrek, this corresponds to a probability of 3.43\%

Problem 8) Check your answer using a Monte-Carlo simulation in Matlab by casting 100,000 level-10 fireballs:

```
    N = 0;
    for i=1:1e6
    damage = sum( ceil( 6*rand(10,1) ) );
    if( damage >= 45)
            N = N + 1;
            end
    end
    N / 1e6
ans=0.0387
```

From a Monte-Carlo simulation, there is a 3.87% chance of rolling 45 or more

- A t-test predicts 3.43% predicted with a t-test

Note:

- You don't need a very large sample size to get pretty good estimates
- If you know the mean and standard deviation, use a normal appproximation
- If you estimate the mean and standard deviation from the data, use a t-test

