ECE 111 - Homework \#11

Week \#11-ECE 343 Signals- Due 8am Tuesday, April 5th
Please submit as a Word or pdf file and email to Jacob_Glower@yahoo.com with header ECE 111 HW\#11

Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=5 e^{-t}-5 e^{-5 t}
$$

or in Matlab:

```
t = [0:0.001:2*pi]';
x = 5 * exp (-t) - 5 * exp (-5*t);
plot(t,x)
```


$\mathrm{x}(\mathrm{t}) \quad$ Note that $\mathrm{x}(\mathrm{t})$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a+b t+c t^{2}+d t^{3}
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> t = [0:0.001:2*pi]';
x = 5 * exp(-t) - 5 * exp(-5*t);
plot(t,x)
>>
>> B = [t.^^3, t.^^2, t, t.^0];
>> A = inv(B'*B)**'**
A =
    -0.0001
        0.1096
    -1.0639
        2.5387
>> plot(t,x,'b',t,B*A,'r')
>> xlabel('Time (seconds)');
>>
```


Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> B = [t.^^0, cos(t), sin(t), cos(2*t), sin(2*t), cos(3*t), sin(3*t)];
>> A = inv(B'*B)*B'*x
A =
    0.6350
        0.4879
        0.7331
        0.0430
        0.5257
    -0.0755
    0.3361
>> plot(t,x,'b',t,B*A,'r')
>> xlabel('Time (seconds)');
>>
```


Superposition

3) Assume X and Y are related by

$$
Y=\left(\frac{2}{s^{2}+2 s+2}\right) X
$$

3a) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$

```
>> a0 = mean(x)
a0=0.6351
>> a1 = 2*mean(x .* cos(t))
a1 = 0.4882
>> b1 = 2*mean(x .* sin(t))
b1 = 0.7330
>> a2 = 2*mean(x .* cos(2*t))
a2= 0.0433
>> b2 = 2*mean(x .* sin(2*t))
b2 = 0.5256
>> a3 = 2*mean(x .* cos(3*t))
a3 = -0.0752
>> b3 = 2*mean(x .* sin(3*t))
b3 = 0.3361
```

Note that this is the same result we got for problem \#2

```
>> A = inv(B'*B)**'*x
    0.6350
    0.4879
    0.7331
    0.0430
    0.5257
    -0.0755
    0.3361
```

Fourier Transforms is just least-squares curve fitting with a basis of sine and cosine funcitons.

3b) Plot $x(t)$ and its Fourier approximation taken out to $3 \mathrm{rad} / \mathrm{sec}$
same answer as problem \#2
4) Determine the gain of this filter at each frequency present in problem \#2 (i.e. $0,1,2,3 \mathrm{rad} / \mathrm{sec}$)

- note: You should get a complex number for the gain at each frequency

```
>> s = 0;
>> G0 = 2 / (s^2 + 2*s + 2)
G0 = 1
>> s = j*1;
>> G1 = 2 / (s^2 + 2*s + 2)
G1 = 0.4000 - 0.8000i
>> s = j*2;
>>G2 = 2 / ( s^2 + 2*s + 2)
G2 = -0.2000 - 0.4000i
>> s = j*3;
>>G3 = 2 / ( s^2 + 2*s + 2)
G3 = -0.1647 - 0.1412i
```

5a) Determine the phasor representation for $\mathrm{Y}(\mathrm{jw})$ at each frequency.

- note: You should get a complex number for Y - the phasor representation for $y(t)$ at $0,1,2$, and 3 $\mathrm{rad} / \mathrm{sec}$

Output $=$ Gain * Input
$\mathrm{Y}=\mathrm{G} * \mathrm{X}$
>> 응
>> s = 0;
>> $y 0=2 /\left(s^{\wedge} 2+2 * s+2\right)$ * $a 0$
$\mathrm{y} 0=0.6351$
>> \% $1 \mathrm{rad} / \mathrm{sec}$
>> s = j*1;
>> $\mathrm{y} 1=2 /\left(\mathrm{s}^{\wedge} 2+2 * \mathrm{~s}+2\right)$ * (a1 - j*b1)
$y 1=-0.3911-0.6837 i$
>> \% $2 \mathrm{rad} / \mathrm{sec}$
>> s = j*2;
>> y 2 = $2 /\left(s^{\wedge} 2+2 * s+2\right)$ * (a2 - j*b2)
$y^{2}=-0.2189+0.0878 i$
>> \% $3 \mathrm{rad} / \mathrm{sec}$
>> s = j*3;
>> $y 3=2 /\left(s^{\wedge} 2+2 * s+2\right) *(a 3-j * b 3)$
$y 3=-0.0351+0.0660 i$

5b) From this, determine $y(t)$

- real $=$ cosine, - imag $=$ sine

$$
\begin{array}{rc}
y(t)= & 0.6351 \\
& -0.3911 \cos (t)+0.6831 \sin (t) \\
& -0.2189 \cos (2 t)-0.0878 \sin (2 t) \\
& -0.0351 \cos (3 t)-0.0660 \sin (3 t)
\end{array}
$$

Note:

- In theory, you need an infinite number of terms
- In practice, the terms go to zero fairly quickly. Truncating after the 3 rd harmonic gives a close approximation to $\mathrm{y}(\mathrm{t})$

6) Plot $x(t)$ and $y(t)$.
```
>> y = y0 + real(y1)*cos(t) - imag(y1)*sin(t);
>> y = y + real(y2)*cos(2*t) - imag(y2)*sin(2*t);
>> y = y + real(y3)*cos(3*t) - imag(y3)*sin(3*t);
>> plot(t,x,'b',t,y,'r')
>> xlabel('Time (seconds)');
>>
```


$\mathrm{x}(\mathrm{t})$ (blue) and $\mathrm{y}(\mathrm{t})$ (red)

