ECE 111 - Homework \#10

ECE 343 Signals \& Systems- Due Due 8am, Tuesday, March 29th
Please submit as a Word or pdf file and email to Jacob_Glower@yahoo.com with header ECE 111 HW\#10

1) A filter has the following transfer function

$$
Y=\left(\frac{6 s+30}{s^{2}+6 s+60}\right) X
$$

1a) What is the differential equation relating X and Y ?

$$
\begin{aligned}
& \left(s^{2}+6 s+60\right) Y=(6 s+30) X \\
& y^{\prime \prime}+6 y^{\prime}+60 y=6 x^{\prime}+30 x
\end{aligned}
$$

or

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+60 y=6 \frac{d x}{d t}+30 x
$$

1b) Find $y(t)$ assuming $x(t)=5$
At DC (0 rad/sec)

$$
\begin{aligned}
& X=5 \\
& Y=\left(\frac{6 s+30}{s^{2}+6 s+60}\right)_{s=0} . \\
& Y=2.5
\end{aligned}
$$

1c) Find $y(t)$ assuming $x(t)=5 \cos (7 t)$
At $7 \mathrm{rad} / \mathrm{sec}$

$$
\begin{array}{ll}
X=5+j 0 & \text { real }=\text { cosine, -imag }=\text { sine } \\
Y=\left(\frac{6 s+30}{s^{2}+6 s+60}\right)_{s=j 7} \cdot(5+j 0) & \\
Y=5.5544-j 2.1167 &
\end{array}
$$

meaning

$$
y(t)=5.5544 \cos (7 t)+2.1167 \sin (7 t)
$$

2) Plot the gain vs. frequency for this filter from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

$$
Y=\left(\frac{6 s+30}{s^{2}+6 s+60}\right) X
$$

>> w = [0:0.01:50]';
>> $s=j * w ;$
>> $G=(6 * s+30) . /(s . \wedge 2+6 * s+60)$;
>> plot(w, abs (G))
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
>>

Problem 3-5) Design a filter of the following form so that the gain matches the graph below:

$$
G(s)=\left(\frac{a s}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)\left(s^{2}+f s+g\right)}\right)
$$

3) Write an m-file, cost.m, which

- Is passed an array, z , with each element representing (a, b, c, d, e, f, g)
- Computes the gain, $G(s)$ for this value of (a, b, c, d, e, f, g)
- Computes the difference between the gain, G, and the target (above), and
- Returns the sum-squared error in the gain

```
function [ J ] = Filter( z )
    z = abs(z);
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    f = z(6);
    g = z(7);
    w = [0:0.01:10]';
    s = j*w;
    Gideal = (w/3).*(w<3) + (0*W + 1).* (w>=3).* (w<6);
    G = a*s./ (( s.^2 + b*s + c) .* (s.^2 + d*s + e ) .* (s.^2 + f*s + g) );
    G = abs(G);
    E = abs(Gideal) - abs(G);
    J = sum(E .^ 2);
    plot(w,Gideal,w,abs(G),'r');
    xlabel('rad/sec');
    ylabel('Gain');
    ylim([0,1.4]);
    pause(0.01);
end
```

4) Use your m-file to determine how 'good' the following filter is:

$$
\begin{aligned}
& \quad G(s)=\left(\frac{a s}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)\left(s^{2}+f s+g\right)}\right)=\left(\frac{85 s}{\left(s^{2}+2 s+2\right)\left(s^{2}+2 s+5\right)\left(s^{2}+2 s+17\right)}\right) \\
& \gg \text { Filter }([85,2,2,2,5,2,17]) \\
& \text { ans }=239.4441
\end{aligned}
$$

5) Use fminsearch() to find the 'best' filter of the form

$$
G(s)=\left(\frac{a s}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)\left(s^{2}+f s+g\right)}\right)
$$

5a) Give the resulting (a, b, c, d, e, f, g)

```
>> [Z,e] = fminsearch('Filter',Z)
```

	a	b	c	d	e	f	g
$\mathrm{Z}=$	431.6913	1.9651	3.9000	0.7258	31.0840	1.8625	14.8573

e =
11.4704

5b) Give the resulting filter, and

$$
G(s)=\left(\frac{431.69 s}{\left(s^{2}+1.96 s+3.9\right)\left(s^{2}+0.72 s+31.08\right)\left(s^{2}+1.86 s+14.85\right)}\right)
$$

5c) Plot the 'optimal' filter's gain vs. frequency

