ECE 111 - Homework #5

Week #5: EE 206 Circuits I. - Due 8am Tuesday, February 15th

1) A resistor has the following volts / amps / resistance / power. Determine the missing parameters:

Volts	Amps	Ohms	Watts
24V	1.5A	16 Ohms	36 W
24V	6A	4	144W
20V	1.5A	13.3 Ohms	30
24V	16.67A	1.44 Ohms	400

Note:

$$V = IR$$

P = VI

Kirchoff's Laws:

2) Use conservation of voltage to determine the unknown voltages

3) Use conservation of current to determine the unknown currents

Current In = Current Out

node a)	
75mA = A + 56mA	A = 19mA
node b)	
56mA = B + 35mA	B = 21mA
node c)	
35mA = C + 24mA	C = 11mA
node d)	
$25\mathrm{mA} + \mathrm{A} = \mathrm{D} + 5\mathrm{mA}$	A = 19mA (from before)
	D = 39A
node e)	
5mA + B = E + 10mA	B = 21mA (from before)
	E = 16mA

Resistors in Series and Parallel

4) Find the total resistance seen by the 10V source

The trick is to combine resistors in series and parallel.

In series (all the current through R1 also goes through R2)

$$R = R_1 + R_2$$

In parallel (both resistors are connected to Va on one side, Vb on the other side)

$$R_1 || R_2 = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$$

930 & 1800 are in series (they add)

930 + 1800 = 2730

2730 & 1700 are in parallel

 $2730 \parallel 1700 = 1047.63$

1047.63 & 780 are in series (they add)

1047.63 + 780 = 1827.63

1827.63 & 1100 are in parallel

 $1827.63 \parallel 1100 = 686.69$

686.69 & 90 are in series (they add)

$$686.69 + 90 = 776.69$$

answer: 776.69 Ohms

5) Use voltage division to find V1, V2, and V3.

$$V_0 = 10$$

Find the net resistance looking right at V1 (686.69 ohms from problem #4).

V1: By voltage division

$$V_1 = \left(\frac{686.69}{686.69+90}\right) V_0$$
$$V_1 = 8.841 V$$

V2:

$$V_2 = \left(\frac{1047.63}{1047.63+780}\right) V_1$$
$$V_2 = 5.068 V$$

V3:

$$V_3 = \left(\frac{1800}{1800+930}\right) V_2$$
$$V_3 = 3.342V$$

6) Use CircuitLab to find V1, V2, V3, and the total resistance seen by the 10V source.

	File - Edit -	Run - Help -				Warning: unsa
 ▼ DC V(V0) V(V1) V(V2) 	10.00 V ∕ € 8.841 V ∕ € 5.068 V ∕ €		R1 90 Ω	V1 780 Ω	V2 930 Ω	V3
V(V3) I(R1.nA) 	3.342 V 🕜 😢 12.88 mA 🧭 🙄 ssion	V1 + 10 V -		R4 1.1 kΩ	R5 1.7 kΩ	R6 1.8 kΩ
Export Results. Run DC Solver DC Sweep						

	V0	V1	V2	V3
Calculated	10.00V	8.841V	5.068V	3.342V
Simulated	10.00V	8.841V	5.068V	3.342V

The current through R1 tells you the net resistance as well:

I = 12.88mA

$$R = \left(\frac{V}{I}\right) = \left(\frac{10V}{12.88mA}\right) = 776.40\Omega$$

In problem #4, the resistance was calculated as

$$R = 776.69\Omega$$

The difference is rounding error with the current

$$I = \left(\frac{10V}{776.69\Omega}\right) = 12.875 mA$$

which is rounded to 12.88mA (resulting in the difference in the resistances)