ECE 111 - Homework \#5

Week \#5: EE 206 Circuits I. - Due 8am Tuesday, February 15th

1) A resistor has the following volts / amps / resistance / power. Determine the missing parameters:

Volts	Amps	Ohms	Watts
24 V	1.5 A	$\mathbf{1 6}$ Ohms	$\mathbf{3 6} \mathrm{W}$
24 V	$\mathbf{6 A}$	4	$\mathbf{1 4 4 W}$
$\mathbf{2 0 V}$	1.5 A	$\mathbf{1 3 . 3}$ Ohms	30
24 V	$\mathbf{1 6 . 6 7 A}$	$\mathbf{1 . 4 4}$ Ohms	400

Note:

$$
\begin{aligned}
& V=I R \\
& P=V I
\end{aligned}
$$

Kirchoff's Laws:

2) Use conservation of voltage to determine the unknown voltages

3) Use conservation of current to determine the unknown currents

Current In = Current Out
node a)

$$
75 \mathrm{~mA}=\mathrm{A}+56 \mathrm{~mA} \quad \mathrm{~A}=19 \mathrm{~mA}
$$

node b)

$$
56 \mathrm{~mA}=\mathrm{B}+35 \mathrm{~mA} \quad \mathrm{~B}=21 \mathrm{~mA}
$$

node c)

$$
35 \mathrm{~mA}=\mathrm{C}+24 \mathrm{~mA} \quad \mathrm{C}=11 \mathrm{~mA}
$$

node d)

$$
\begin{array}{rl}
25 \mathrm{~mA}+\mathrm{A}=\mathrm{D}+5 \mathrm{~mA} & \mathrm{~A}=19 \mathrm{~mA}(\text { from before }) \\
\mathrm{D}=39 \mathrm{~A}
\end{array}
$$

node e)

$$
\begin{array}{rl}
5 \mathrm{~mA}+\mathrm{B}=\mathrm{E}+10 \mathrm{~mA} & \mathrm{~B}=21 \mathrm{~mA}(\text { from before }) \\
& \mathrm{E}=16 \mathrm{~mA}
\end{array}
$$

Resistors in Series and Parallel

4) Find the total resistance seen by the 10 V source

The trick is to combine resistors in series and parallel.
In series (all the current through R1 also goes through R2)

$$
R=R_{1}+R_{2}
$$

In parallel (both resistors are connected to Va on one side, Vb on the other side)

$$
R_{1} \| R_{2}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}
$$

$930 \& 1800$ are in series (they add)

$$
930+1800=2730
$$

$2730 \& 1700$ are in parallel
2730 || $1700=1047.63$
$1047.63 \& 780$ are in series (they add)
$1047.63+780=1827.63$
1827.63 \& 1100 are in parallel
1827.63 || $1100=686.69$
686.69 \& 90 are in series (they add)
$686.69+90=776.69$
answer: 776.69 Ohms
5) Use voltage division to find V1, V2, and V3.

By inspection

$$
V_{0}=10
$$

Find the net resistance looking right at V1 (686.69 ohms from problem \#4).
V1: By voltage division

$$
\begin{aligned}
& V_{1}=\left(\frac{686.69}{686.69+90}\right) V_{0} \\
& V_{1}=8.841 \mathrm{~V}
\end{aligned}
$$

V2:

$$
\begin{aligned}
& V_{2}=\left(\frac{1047.63}{1047.63+780}\right) V_{1} \\
& V_{2}=5.068 \mathrm{~V}
\end{aligned}
$$

V3:

$$
\begin{aligned}
& V_{3}=\left(\frac{1800}{1800+930}\right) V_{2} \\
& V_{3}=3.342 \mathrm{~V}
\end{aligned}
$$

6) Use CircuitLab to find V1, V2, V3, and the total resistance seen by the 10 V source.

	V0	V1	V2	V3
Calculated	10.00 V	8.841 V	5.068 V	3.342 V
Simulated	10.00 V	8.841 V	5.068 V	3.342 V

The current through R1 tells you the net resistance as well:

$$
\begin{aligned}
& \mathrm{I}=12.88 \mathrm{~mA} \\
& R=\left(\frac{V}{I}\right)=\left(\frac{10 \mathrm{~V}}{12.88 \mathrm{~mA}}\right)=776.40 \Omega
\end{aligned}
$$

In problem \#4, the resistance was calculated as

$$
R=776.69 \Omega
$$

The difference is rounding error with the current

$$
I=\left(\frac{10 \mathrm{~V}}{776.69 \Omega}\right)=12.875 \mathrm{~mA}
$$

which is rounded to 12.88 mA (resulting in the difference in the resistances)

