ECE 111 - Homework \#2

Week \#2: Matlab and Trigonometry Due 8am, Tuesday, January 25th
Please submit as a Word or pdf file and email to Jacob_Glower@yahoo.com with header ECE 111 HW\#2
Plot the following functions in Matlab

1) sine vs. cosine
```
Q = [0:0.01:1]' * 2*pi;
for i=1:1000
    X = cos(Q);
    Y = sin(Q + 0.01*i);
    plot(X,Y);
    xlim([-1.2,1.2]);
    ylim([-1.2,1.2]);
    pause(0.01);
    end
```


2) Lissajous Figure:

```
Q = [0:0.01:1]' * 2*pi;
for i=1:1000
    X = cos(Q);
    Y = sin(3*Q + 0.01*i);
    plot(X,Y);
    xlim([-1.2,1.2]);
    ylim([-1.2,1.2]);
    pause(0.01);
    end
```


3) Linear Spiral: $r=\theta$

```
Q = [0:0.01:8]' * 2*pi;
for i=1:1000
    r = Q;
    X = r .* cos(Q + 0.05*i);
    Y = r .* sin(Q + 0.05*i);
    plot(X,Y);
    xlim([-30,30]);
    ylim([-30,30]);
    pause(0.01);
    end
```


4) Log Spiral: $r=\ln (\theta+1)$

```
Q = [0:0.01:8]' * 2*pi;
for i=1:1000
    r = log(Q + 1);
    X = r .* cos(Q + 0.05*i);
    Y = r .* sin(Q + 0.05*i);
    plot(X,Y);
    xlim([-5,5]);
    ylim([-5,5]);
    pause(0.01);
    end
```


$f(x)=0$: Newton's Method

5) Use Newton's method to find the solutions to problem \#4 for homework set \#1

$$
y=x \cos (2 x) \quad \text { and } \quad y=x^{2}-1
$$

or

$$
x \cos (2 x)-\left(x^{2}-1\right)=0
$$

Solution near -1.6:

```
>> x1 = -2;
>> yl = x1*}\operatorname{cos}(2*x1)-(x\mp@subsup{1}{}{\wedge}2-1
Y1= -1.6927
>> x2 = -1.5;
>> y2 = x2*}\operatorname{cos}(\mp@subsup{2}{}{*}x2)-(x\mp@subsup{2}{}{\wedge}2-1
y2 = 0.2350
>>x3 = x2 - (x2-x1) / (y2-y1)*y2
x3 = -1.5610
>> y3 = x3*}\operatorname{cos}(\mp@subsup{2}{}{*}x3)-(x\mp@subsup{3}{}{\wedge}2-1
y3=0.1241
>> x4 = x3 - (x3-x2)/(y3-y2)*y3
x4=-1.6291
>> y4 = x4*}\operatorname{cos}(\mp@subsup{2}{}{*}x4)-(x4^2 - 1
y4= -0.0360
>> x5 = x4 - (x4-x3) / (y4-y3)*y4
x5=-1.6138
>> y5 = x5*}\operatorname{cos}(2*x5)-(x\mp@subsup{5}{}{\wedge}2-1
y5=0.0035
>>x6 = x5 - (x5-x4) / (y5-y4)*y5
x6=-1.6152
>> y6 = x6*}\operatorname{cos}(\mp@subsup{2}{}{*}x6)-(x\mp@subsup{6}{}{\wedge}2-1
y6 = 8.3332e-005
```

answer: $x=\mathbf{- 1 . 6 1 5 2}$

Solution near +1.6 :
answer: $x=0.8961$

```
>> x1 = 1.6;
>> y1 = x1*}\operatorname{cos}(2*x1) - (x1^2 - 1)
y1 = -3.1573
>> x2 = 1.7;
>> y2 = x2*}\operatorname{cos}(2*x2) - (x2^2 - 1)
y2 = -3.5336
>> x3 = x2 - (x2-x1) / (y2-y1)*y2
x3 = 0.7609
>> y3 = x3* cos(2*x3)-(x\mp@subsup{3}{}{\wedge}2-1)
y3=0.4582
>> x4 = x3 - (x3-x2) / (y3-y2)*y3
x4 = 0.8687
>> y4 = x4*}\operatorname{cos}(2*x4)-(x4^2 - 1)
y4=0.1012
>> x5 = x4 - (x4-x3) / (y4-y3)*y4
x5 = 0.8993
>> y5 = x5*}\operatorname{cos}(2*x5)-(x\mp@subsup{5}{}{\wedge}2-1
y5 = -0.0118
>> x6 = x5 - (x5-x4) / (y5-y4)*y5
x6 = 0.8961
>> y6 = x6*}\operatorname{cos}(2*x6)-(x\mp@subsup{6}{}{\wedge}2 - 1
y6 = 2.2637e-004
```


$f(x)=0$: Shoot Game:

Pick a random number from 50 to 100 for your target.
Pick a random number from 30 to 70 for your firing angle
6) Use trial and error to find the initial velocity (X) to fire a tennis ball to hit the target (result is zero)

```
>> Target = 50*rand + 50
Target = 54.6428
>> Angle = 50*rand + 20
Angle = 59.2963
>> Shoot(30,Angle,Target)
ans = -14.4655
>> Shoot(25,Angle,Target)
ans = 3.7603
>> Shoot(27,Angle,Target)
ans = -3.4390
>> Shoot(26,Angle,Target)
ans = 0.1822
>> Shoot(26.2,Angle,Target)
ans = -0.5389
```


7) Repeat using Newton's method to find the initial velocity (X) to fire the tenis ball to hit the target

```
>> x1 = 30;
>> yl = Shoot(xl, Angle, Target)
y1 = -14.4655
>> x2 = 25;
>> y2 = Shoot(x2, Angle, Target)
y2 = 3.7603
>> x3 = x2 - (x2-x1) / (y2-y1)*y2
x3 = 26.0316
>> y3 = Shoot(x3, Angle, Target)
y3 = 0.0685
>> x4 = x3 - (x3-x2) / (y3-y2)*y3
x4 = 26.0507
>> y4 = Shoot(x4, Angle, Target)
y4 = -4.7224e-004
```


