ECE 111 - Homework \#1

Week \#1: Algebra. Due 8am Tuesday, January 18th
Please submit as a Word or pdf file and email to Jacob_Glower@yahoo.com with header ECE 111 HW\#1

functions poly and roots:

1) Use MATLAB, find the roots the the following polynomials:
a) $x^{3}+9 x^{2}+26 x+24=0$
>> roots([1,9,26,24])

$$
\begin{aligned}
& -4.0000 \\
& -3.0000 \\
& -2.0000
\end{aligned}
$$

You can also find these by plotting

$$
y=x^{3}+9 x^{2}+26 x+24
$$

and finding the zero crossings. This has three real roots, meaning it crosses the X axis three times:

```
>> x = [-5:0.01:-1]';
>> y = x.^3 + 9*x.^2 + 26*x + 24;
>> plot(x,y)
>> grid
>> ylim([-2,2])
```


The zero crossings are the roots
b) $\quad x^{4}+15 x^{3}+80 x^{2}+180 x+144=0$
>> $\operatorname{roots}([1,15,80,180,144])$

$$
\begin{aligned}
& -6.0000 \\
& -4.0000 \\
& -3.0000 \\
& -2.0000
\end{aligned}
$$

You can also plot

$$
y=x^{4}+15 x^{3}+80 x^{2}+180 x+144
$$

and find the zero crossings. This has four real roots, meaning it crosses the X axis for times:

```
>> x = [-7:0.01:-1]';
>> y = x.^4 + 15*x.^3 + 80*x.^2 + 180*x + 144;
>> plot(x,y)
>> grid
>> ylim([-10,10])
```


c) $x^{5}+15 x^{4}+80 x^{3}+180 x^{2}+144 x+1000=0$ >> $\operatorname{roots}([1,15,80,180,144,1000])$

$$
\begin{array}{r}
-7.5174 \\
-4.3579+3.3293 i \\
-4.3579-3.3293 i \\
0.6166+2.0107 i \\
0.6166-2.0107 i
\end{array}
$$

This only has one real root, meaning it only crosses the X axis one time

```
>> x = [-10:0.01:10]';
>> y = x.^5 + 15*x.^4 + 80*x.^3 + 180*x.^2 + 144*x + 1000;
>> plot(x,y)
>> grid
>> ylim([-1000,2000])
```


2) Use Matlab to multiply our the following polynomials.
a) $\quad(x+5)(x+6)(x+7)(x+8)=0$

```
>> poly([-5,-6,-7,-8])
```

ans =
$1 \quad 26$
251
1066
1680
meaning this is the same as

$$
x^{4}+26 x^{3}+251 x^{2}+1066 x+1680=0
$$

b) $\quad(x-1)(x+1)(x-3)(x+3)(x+4)(x+5)=0$

```
>> poly([1,-1,3,-1,-4,-5])
    ans =
        1 
```

meaning this is the same as

$$
x^{6}+7 x^{5}-2 x^{4}-74 x^{3}-59 x^{2}+67 x+60=0
$$

Graphing in Matlab

3) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=x \cdot \cos (2 x) \\
& y=x^{2}-1
\end{aligned}
$$

There are two solutions (where the curves intersect)

- ($-1.615,1.61$)
- (0.8961, -0.197)

4) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=\left(\frac{\sin (3 x)}{3 x}\right) \\
& y=1-\frac{x}{2} \\
& \text { >> } x=[-4: 0.01: 4] \text { '; } \\
& \text { >> } \left.y 1=\sin \left(3 *_{x}\right) \text {./ (3* } x\right) \text {; } \\
& \text { >> } y^{2}=1-x / 2 ; \\
& \text { >> plot(x,y1,'b',x,y2,'r') }
\end{aligned}
$$

From the graph, there are three solutions (where the two curves intersect)

- $(0,1)$
- $(0.325,0.824)$
- (2.046, -0.023)

Monte-Carlo Simulations:

Two teams, A and B , are playing a game. Team A has a 70% chance of winning any given game.
5) For Loops: Suppose the two teams play a 9 -game match. The match winner is whoever has 5 wins or more. Determine the probability that team A will win the match.
hint: use a for-loop (for $i=1: 9$) and count how many times team A wins during the 9-game match).

Code:

```
% Best of 9 series
% Team A has a 70% chance of winning a given game
tic
WINS = 0;
for i=1:1e5
    A = 0;
    for j=1:9
        if(rand < 0.70) A = A + 1;
        end
    end
    if(A >= 5)
        WINS = WINS + 1;
    end
end
WINS/1e5
toc
ans =
    0.9001
Elapsed time is 0.112847 seconds.
```

Team A has a 90.01% chance of winning the match
6) While Loops: Suppose the two teams play until one team is up by 5 games. Determine the probability that team A will win the match.
hint: use a while-loop and keep looping until one team is up by 5 games.

```
% Win by 5 series
% Team A has a 70% chance of winning a given game
tic
WINS = 0;
for i=1:1e5
    A = 0;
    while(abs(A) < 5)
        if(rand < 0.7)
                A = A + 1;
            else
                A = A - 1;
        end
    end
    if(A >=5)
        WINS = WINS + 1;
    end
end
WINS/1e5
toc
ans =
    0.9856
Elapsed time is 0.094450 seconds.
```

Team A has a 98.56% chance of winning the match
7) Gauss' Dilema: Play the following game 100 times. (i.e. use Matlab and a for loop along with a while loop)

- It costs $\$ 25$ to play. The pot starts at $\$ 1$.
- Flip a coin. If you get a heads, the pot doubles. If you get a tails, the game is over and you collect the money in the pot.
- Keep flipping until you get a tails.

How much money do you expect to win (or lose) each time you play this game?
After 100 games, I'm down $\$ 1951$. It isn't a great game to play....

```
% Gauss' Dilema
tic
BANK = 0;
for i=1:1e2
        POT = 1;
        while(rand < 0.5)
            POT = POT * 2;
            end
        BANK = BANK + POT - 25;
end
BANK
toc
BANK =
    -1951
Elapsed time is 0.000535 seconds.
```


Dice:

8a) Determine the probability distribution for the following:

- Roll three 6 -sided dice and four 10 -sided dice.
- The total is the sum of all of the dice.

$$
\mathrm{Y}=3 \mathrm{~d} 6+4 \mathrm{~d} 10
$$

Code:

```
X = zeros(60,1);
for i=1:1e5
    D = sum( ceil( 6*rand(1,3) ) ) + sum( ceil( 10*rand(1,4)));
    X(D) = X(D) + 1;
    end
bar(X / 1e5)
xlabel('Die Total');
ylabel('Probability');
title('100,000 die rolls')
```


8b) What is the probability of the total being 30 ?

```
>> X(30) / 1e5
ans = 0.0572
```

There is a 5.72% chance of the total being 30

8c) What is the probability of the total being 30 or more?

```
>> sum(X(30:60))/1e5
ans = 0.6760
```

There is a 67.6% chance that the total will be 30 or more
9) Two people are playing a dice game:

- Player A rolls seven dice and takes the total (3d6 + 4d10)
- Player B rolls two 100 -sided dice and takes the lower of the two numbers.
- Whoever has the highest score wins.

Determine the probability that

- A wins
- There is a tie, and
- B wins
- A wins 52.21% of the time
- It's a tie 1.40% of the time
- B wins 46.38% of the time

Code:

```
W = 0;
T = 0;
L = 0;
for i=1:1e5
    A = sum( ceil( 6*rand(1,3) ) ) + sum( ceil( 10*rand(1,4)));
    B = min( ceil(100*rand(1,2) ) );
    if (A > B)
            W = W + 1;
    elseif (A == B)
            T = T + 1;
    else
            L = L + 1;
    end
end
    [W,T,L] / 1e5
ans =
    0.5221 0.0140 0.4638
```

