ECE 111 - Homework \#2

Week \#2: Matlab and Trigonometry Due 8am, Tuesday, January 25th
Please submit as a Word or pdf file and email to Jacob_Glower@yahoo.com with header ECE 111 HW\#2

Plot the following functions in Matlab

1) sine vs. cosine
```
Q = [0:0.01:1]' * 2*pi;
for i=1:1000
    X = cos(Q);
    Y = sin(Q + 0.01*i);
    plot(X,Y);
    xlim([-1.2,1.2]);
    ylim([-1.2,1.2]);
    pause(0.01);
    end
```

2) Lissajous Figure:
```
Q = [0:0.01:1]' * 2*pi;
for i=1:1000
    X = cos(Q);
    Y = sin(3*Q + 0.01*i);
    plot(X,Y);
    xlim([-1.2,1.2]);
    ylim([-1.2,1.2]);
    pause(0.01);
    end
```

3) Linear Spiral: $r=\theta$
```
Q = [0:0.01:8]' * 2*pi;
for i=1:1000
    r = Q;
    X = r .* cos(Q + 0.05*i);
    Y = r .* sin(Q + 0.05*i);
    plot(X,Y);
    xlim([-30,30]);
    ylim([-30,30]);
    pause(0.01);
    end
```

4) \log Spiral: $r=\ln (\theta+1)$
```
Q = [0:0.01:8]' * 2*pi;
for i=1:1000
    r = log(Q + 1);
    X = r .* cos(Q + 0.05*i);
    Y = r .* sin(Q + 0.05*i);
    plot(X,Y);
    xlim([-5,5]);
    ylim([-5,5]);
    pause(0.01);
    end
```


$f(x)=0$: Newton's Method

5) Use Newton's method to find the solutions to problem \#3 for homework set \#1

$$
y=x \cdot \cos (2 x) \quad \text { and } \quad y=x^{2}-1
$$

or

$$
x \cdot \cos (2 x)-\left(x^{2}-1\right)=0
$$

$f(x)=0$: Shoot Game:

Pick a random number from 50 to 100 for your target.
Pick a random number from 30 to 70 for your firing angle
6) Use trial and error to find the initial velocity (X) to fire a tennis ball to hit the target (result is zero)

```
>> Target = 50*rand + 50
Target = 90.7362
>> Angle = 50*rand + 20
Angle = 65.2896
>> Shoot(30, Angle, Target)
ans = 30.6515
>> Shoot(50, Angle, Target)
ans = -28.2262
>> Shoot(40, Angle, Target)
ans = -0.9533
```

7) Repeat using Newton's method to find the initial velocity (X) to fire the tenis ball to hit the target
```
>> X1 = 30;
>> Y1 = Shoot(X1, Angle, Target)
Y1 = 30.6515
>> X2 = 35;
, Target)
>> Y2 = Shoot(X2
>> X3 = X2 - (X2-X1)/(Y2-Y1)*Y2
X3 = 39.5109
>> Y3 = Shoot(X3, Angle, Target)
Y3 = 0.5175
>> X4 = X3 - (X3-X2)/(Y3-Y2)*Y3
X4 = 39.6774
>> Y4 = Shoot(X4, Angle, Target)
Y4 = 0.0156
```


