ECE 111 - Homework \#8

EE 206 Circuits I
Due Monday, October 16th
$\mathbf{V}=\mathbf{I R}, \mathbf{P}=\mathrm{VI}$

1) A resistor has the following volts / amps / resistance / power. Determine the missing parameters:

Volts	Amps	Ohms	Watts
24 V	1.6 A	15 Ohms	38.4 W
24 V	3.0 A	8	72.0 W
68.12 V	2.2 A	$\mathbf{3 0 . 9 9}$ Ohms	150 W
24 V	4.00 A	6.00 Ohms	96 W

Sample Calculation

$$
\begin{aligned}
& P=V \cdot I \\
& P=24 V \cdot 1.6 A \\
& P=38.4 W \\
& V=I \cdot R \\
& 24 V=1.6 A \cdot R \\
& R=15 \Omega
\end{aligned}
$$

Resistor Color Codes

2) Determine the value of the following resistors

0	1	2	3	4	5	6	7	8	9
black	brown	red	orange	yellow	green	blue	violet	grey	white

a) Brown - Black - Red

$$
\begin{aligned}
& 1-0-2 \\
& R=10 \cdot 10^{2} \Omega \\
& R=1 k \Omega
\end{aligned}
$$

b) Yellow - Violet - Orange

$$
\begin{aligned}
& 4-7-3 \\
& R=47 \cdot 10^{3} \Omega \\
& R=47 \mathrm{k} \Omega
\end{aligned}
$$

c) White - Brown - Yellow

$$
\begin{aligned}
& 9-1-4 \\
& R=91 \cdot 10^{4} \Omega \\
& R=91 \mathrm{k} \Omega
\end{aligned}
$$

Kirchoff's Laws:

3) Use conservation of voltage to determine the unknown voltages
around any closed path, the voltages must sum to zero

- add if you hit the + sign first
- subtract if you hit the - sign first

Example: Upper left corner

$$
-30 V+37 V+A-D=0
$$

4) Use conservation of current to determine the unknown currents

At any node,

- Current In $=$ Current Out
- The sum of the current from the node must be zero

Example:

$$
A+D=E+12 m A
$$

Resistors in Series and Parallel

5) Find the total resistance Rab by hand

$$
250+350=600
$$

$$
600 \text { || } 550=286.95
$$

$$
286.95+50=336.95
$$

$$
336.95|\mid 450=192.68
$$

$$
192.68+150=342.68
$$

ans: 342.68 Ohms
On an HP Prime

$$
\begin{aligned}
& 350 \\
& \text { enter } \\
& 250 \\
& + \\
& x^{-1} \\
& 550 \\
& x^{-1} \\
& + \\
& x^{-1} \\
& 50 \\
& + \\
& x^{-1} \\
& 450 \\
& x^{-1} \\
& + \\
& x^{-1} \\
& 150 \\
& +
\end{aligned}
$$

6) Find the total resistance Rab using CircuitLab

- Apply a 10 V source to a and b .
- Determine the current draw from the 10 V source

Calculate the net resistance from $\mathrm{V}=\mathrm{IR}$

$$
V=I R
$$

$$
10 \mathrm{~V}=29.18 \mathrm{~mA} \cdot R
$$

$$
R=342.70 \Omega
$$

Calculated value $=342.68$ Ohms

7) Find the total resistance Rab by hand

$$
\begin{aligned}
& 350+900=1250 \\
& 1250 \| 800=487.80 \\
& 487.80+250=737.80 \\
& 737.80 \| 700=359.20 \\
& 359.20+150=509.20
\end{aligned}
$$

ans: Ran $=\mathbf{5 0 9 . 2 0}$ Ohms

With an HP Prime calculator

$$
\begin{aligned}
& 900 \\
& \text { enter } \\
& 350 \\
& + \\
& x^{-1} \\
& 800 \\
& x^{-1} \\
& + \\
& x^{-1} \\
& 250 \\
& + \\
& x^{-1} \\
& 700 \\
& x^{-1} \\
& + \\
& x^{-1} \\
& 150 \\
& +
\end{aligned}
$$

8) Find the total resistance, Rab, using CircuitLab

- Apply a 10 V source to a and b .
- Determine the current draw from the 10 V source
- Calculate the net resistance from $\mathrm{V}=\mathrm{IR}$

Calculations

$$
V=I R
$$

$$
10 \mathrm{~V}=19.64 \mathrm{~mA} \cdot R
$$

$$
R=509.16 \Omega
$$

Calculated $=509.20$ Ohms

Voltage Division

9) Use voltage division to find V1, V2, and V3.

Start by finding the impedance looking right at V1, V2, and V3

$$
\mathrm{R} 3=900 \mathrm{Ohms}
$$

R2:

$$
\begin{aligned}
& 350+900=1250 \\
& 1250 \| 800=407.80
\end{aligned}
$$

R1:

$$
\begin{aligned}
& 407.80+250=657.80 \\
& 657.80 \| 700=359.20
\end{aligned}
$$

Now use voltage division

$$
\begin{aligned}
& V_{1}=\left(\frac{359.20}{359.20+150}\right) V_{0} \\
& V_{1}=7.054 \mathrm{~V} \\
& V_{2}=\left(\frac{407.80}{407.80+250}\right) V_{1} \\
& V_{2}=4.664 \mathrm{~V} \\
& V_{3}=\left(\frac{900}{900+350}\right) V_{2} \\
& V_{3}=3.358 \mathrm{~V}
\end{aligned}
$$

10) Use CircuitLab to find V1, V2, V3.

Same results as problem \#9

