ECE 111: Homework 16

ECE 331 Energy Conversion
Due Monday, December 11th

1) Determine the circuit model for a $13.2 \mathrm{kV}: 240 \mathrm{~V}$ transformer is tested with the following test results:

Transformer Model

	V	Power	pf
Open-Circuit Test	$\mathrm{V} 1=13.2 \mathrm{kV}$	40 W	0.015
Short-Circuit Test	$\mathrm{V} 2=40 \mathrm{~V}$	12 W	0.985

Open Circuit Test

```
    P=V\cdotI\cdotpf
>> V = 13.2e3;
>> P = 40;
>> pf = 0.015;
>> I = P / ( V * pf )
I = 0.2020
    Z=(\frac{V}{I})\angle0
    cos 0=pf
>> q = acos(pf)
q= 1.5558 radians
```

The series model for the core is then:

```
>> Z = V/I * (cos(q) + j*sin(q))
Z = 9.8010e+002 +6.5333e+004i
```

The parallel model for the core is then:

```
>> Rc = 1/real(1/Z)
Rc = 4.3560e+006
>> Xc = - 1/imag(1/Z)
Xc = 6.5347e+004
```

Line Model:

```
>> V = 40;
>> P = 12;
>> pf = 0.985;
>> I = P / ( V * pf )
I = 0.3046
>> q = acos(pf)
q = 0.1734 radians
>> Z = V/I * (cos(q) + j*sin(q))
Z = 1.2936e+002 +2.2662e+001i
>> RL = real(Z)
RL = 129.3633
>> XL = imag(Z)
XL = 22.6621
```


2) Convert the voltages and impeances to the 120 V node (right side)

3) Write the voltage node equations for this circuit (with transformers removed)

4) Determine the voltages at each node

Group terms

$$
\begin{aligned}
& V_{0}=120 \\
& -\left(\frac{1}{R_{01}}\right) V_{0}+\left(\frac{1}{R_{01}}+\frac{1}{R_{1}}+\frac{1}{j X_{1}}+\frac{1}{R_{12}}\right) V_{1}-\left(\frac{1}{R_{12}}\right) V_{2}=0 \\
& -\left(\frac{1}{R_{12}}\right) V_{1}+\left(\frac{1}{R_{12}}+\frac{1}{R_{2}}+\frac{1}{j X_{2}}+\frac{1}{R_{23}}\right) V_{2}-\left(\frac{1}{R_{23}}\right) V_{3}=0 \\
& -\left(\frac{1}{R_{23}}\right) V_{2}+\left(\frac{1}{R_{23}}+\frac{1}{R_{3}}\right) V_{3}=0
\end{aligned}
$$

Place in matrix form
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ \left(\frac{-1}{R_{01}}\right) & \left(\frac{1}{R_{01}}+\frac{1}{R_{1}}+\frac{1}{j X_{1}}+\frac{1}{R_{12}}\right) & \left(\frac{-1}{R_{12}}\right) & 0 \\ 0 & \left(\frac{-1}{R_{12}}\right) & \left(\frac{1}{R_{12}}+\frac{1}{R_{2}}+\frac{1}{j X_{2}}+\frac{1}{R_{23}}\right) & \left(\frac{-1}{R_{23}}\right) \\ 0 & 0 & \left(\frac{-1}{R_{23}}\right) & \left(\frac{1}{R_{23}}+\frac{1}{R_{3}}\right)\end{array}\right]\left[\begin{array}{c}V_{0} \\ V_{1} \\ V_{2} \\ V_{3}\end{array}\right]=\left[\begin{array}{c}120 \\ 0 \\ 0 \\ 0\end{array}\right]$

Solve in Matlab

```
>> al = [1,0,0,0];
>> a2 = [-1/R01,1/R01+1/R1+1/X1+1/R12,-1/R12,0];
>> a3 = [0,-1/R12,1/R12+1/R2+1/X2+1/R23,-1/R23];
>> a4 = [0,0,-1/R23,1/R23+1/R3];
>>A = [a1;a2;a3;a4]
    0.0010 rerrer
>> B = [120;0;0;0]
    120
        0
        0
        0
```

```
>> V = inv(A)*B
V0 120.00
V1 119.95 + 0.03i
V2 119.92 + 0.04i
v3 118.17 + 0.04i
```

If you prefer polar form:

```
>> abs(V)
    120.0000
    119.9508
    119.9225
    118.1664
```

The voltage at the customer has dropped to 118.16 Volts.
5) Determine the efficiency of this system

- Ignoring the core losses
- Assumes a large number of customers share these losses
- Including the core losses
- Assumes a single customer

Compute the power dissipated in each resistor

```
>> V0 = V(1);
>> V1 = V(2);
>> V2 = V(3);
>> V3 = V(4);
>> P01 = (abs(V0-V1))^2 / R01
P01 = 10.8551
>> P1 = (abs(V1))^2 / R1
P1 = 8.1853e+003
>> P12 = (abs(V1-V2))^2 / R12
P12 = 4.4047
>> P2 = (abs(V2))^2 / R2
P2 = 2.9002e+003
>> P23 = (abs (V2-V3))^2 / R23
P23 = 144.1043
>>P3 = (abs(V3) )^2 / R3
P3 = 9.6967e+003
```

a) The efficency including everything (single customer)

```
>> eff = P3 / (P01 + P12 + P23 + P1 + P2 + P3)
eff = 0.4630
```

b) Efficiency ignoring the core losses (many customers)

```
>> eff = P3 / (P01 + P12 + P23 + P3)
eff = 0.9838
>>
```


