ECE 111 - Homework \#15

ECE 343 Signals- Due Tuesday, December 5th
Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard
Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=5 \sin (t)+3
$$

clipped at +7 V and +1 V . In Matlab:

```
t = [0:0.001:2*pi]';
x = 5*sin(t) + 3;
x = min(x, 7);
x = max(x, 1);
plot(t,x)
```


$x(t) \quad$ Note that $x(t)$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> t = [0:0.001:2*pi]';
x = 5*sin(t) + 3;
x = min(x, 7);
x = max(x, 1);
plot(t,x)
>>B=[t.^0, t, t.^^2, t.^3, t.^4, t.^5];
>> A = inv(B'*B)**'**
a0 2.8578
a1 5.9148
a2 -1.2585
a3 -0.7887
a4 0.2521
a5 -0.0190
>> plot(t,x,'b',t,B*A,'r')
>>
```


Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> B = [t.^^0, cos(t), sin(t), cos(2*t), sin(2*t), cos(3*t), sin(3*t)];
>> A = inv(B'*B)**'*x
a0 3.5851
a1 0.0000
a2 3.4782
a3 -0.5877
a4 -0.0000
a5 0.0000
a6 0.5101
>> plot(t,x,'b',t,B*A,'r')
```

Note:

- This is just a curve fit with a different basis
- What's useful about this curve fit is the results are sine waves

3) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$
```
>> a0 = mean(x)
a0= 3.5850
>> al = 2*mean(x .* cos(t))
a1 = 7.7784e-004
>> b1 = 2*mean(x .* sin(t))
b1 = 3.4777
>> a2 = 2*mean(x .* cos(2*t))
a2= -0.5868
>> b2 = 2*mean(x .* sin(2*t))
b2 = -2.1011e-007
>> a3 = 2*mean(x.* cos(3*t))
a3 = 7.7778e-004
>> b3 = 2*mean(x .* sin(3*t))
b3 = 0.5100
```

Note:

- This is the same result as problem \#2
- Fourier transforms is just curve fitting where the basis is a bunch of sine waves

Superposition:

Assume X and Y are related by

$$
Y=\left(\frac{1.5}{s^{3}+1.7 s^{2}+2.2 s+1.2}\right) X
$$

4) Using the results from problem $2 \& 3$, determine $y(t)$ assuming
```
    \(x(t)=a_{0}\)
    >> \(\mathrm{XO}=\mathrm{aO}\);
>> \(s=0 ;\)
>> \(Y 0=\left(1.5 /\left(s^{\wedge} 3+1.7 * s^{\wedge} 2+2.2 * s+1.2\right)\right)\) * \(X 0\)
\(\mathrm{Y} 0=4.4812\)
    \(y_{0}(t)=4.4812\)
```

5) Using the results from problem $2 \& 3$, determine $y(t)$ assuming
```
            x(t)=\mp@subsup{a}{1}{}\operatorname{cos}(t)+\mp@subsup{b}{1}{}\operatorname{sin}(t)
    >> X1 = a1 - j*b1
    x1 = 0.0008 - 3.4777i
    >> s = j*1;
    >> Y1 = (1.5 / (s^3 + 1.7*s^2 + 2.2*s + 1.2)) * X1
    Y1 = -3.7045 + 1.5426i
```

meaning

$$
y_{1}(t)=-3.7045 \cos (t)-1.5426 \sin (t)
$$

6) Using the results from problem $2 \& 3$, determine $y(t)$ assuming
```
    x(t)=\mp@subsup{a}{2}{}\operatorname{cos}(2t)+\mp@subsup{b}{2}{}\operatorname{sin}(2t)
>> X2 = a2 - j*b2
X2 = -0.5868 + 0.0000i
>> s = j*2;
>> Y2 = (1.5 / ( s^3 + 1.7* s^2 + 2.2*s + 1.2)) * X2
Y2 = 0.1112 - 0.0715i
```

meaning

$$
y_{2}(t)=0.1112 \cos (2 t)+0.0715 \sin (2 t)
$$

7) Using the results from problem $2 \& 3$, determine $y(t)$ assuming
```
        x(t)=\mp@subsup{a}{3}{}\operatorname{cos}(3t)+\mp@subsup{b}{3}{}\operatorname{sin}(3t)
    >> x3 = a3 - j*b3
    x3 = 0.0008 - 0.5100i
    >> s = j*3;
    >> Y3 = (1.5 / (s^3 + 1.7*s^2 + 2.2*s + 1.2)) * X3
    Y3 = 0.0254 + 0.0176i
```

meaning

$$
y_{3}(t)=0.0254 \cos (3 t)-0.0176 \sin (3 t)
$$

8) Plot $y(t)$ when $x(t)$ is the sum of $x(t)$ for problems $4 . .7$

The total answer is the sum of all four parts

$$
\begin{aligned}
& y(t)=y_{0}+y_{1}+y_{2}+y_{3} \\
& y(t)=4.4812-3.7045 \cos (t)-1.5426 \sin (t) \\
& +0.1112 \cos (2 t)+0.0715 \sin (2 t) \\
& 0.0254 \cos (3 t)-0.0176 \sin (3 t)
\end{aligned}
$$

In Matlab
>> $\mathrm{y} 0=4.4812$;
$\gg y 1=r e a l(Y 1) * \cos (t)-i m a g(Y 1) * \sin (t) ;$
$\gg y 2=r e a l(Y 2) * \cos (2 * t)-i m a g(Y 2) * \sin (2 * t) ;$
>> y3 $=$ real (Y3)*cos(3*t) - imag(Y3)*sin(3*t);
>>
>> $y=y 0+y 1+y 2+y 3 ;$
>> plot(t,x,'b',t,y,'r')

