ECE 111 - Homework \#14

ECE 343 Signals \& Systems
Due Monday, November 27th

Filter Analysis

1) A filter has the following transfer function

$$
Y=\left(\frac{10(s+2)}{(s+0.5)(s+6)(s+7)}\right) X
$$

1a) What is the differential equation relating X and Y ?
Cross multiply and multiply out

$$
\begin{aligned}
& ((s+0.5)(s+6)(s+7)) Y=10(s+2) X \\
& \left(s^{3}+13.5 s^{2}+48.5 s+21\right) Y=(10 s+20) X
\end{aligned}
$$

Note that sY means the derivative of $y(t)$

$$
y^{\prime \prime \prime}+13.5 y^{\prime \prime}+48.5 y^{\prime}+21 y=10 x^{\prime}+20 x
$$

1b) Find $y(t)$ assuming $x(t)=5$
At DC, $s=0$

$$
\begin{aligned}
& Y=\left(\frac{10(s+2)}{(s+0.5)(s+6)(s+7)}\right)_{s=0} \cdot(5) \\
& Y=4.762
\end{aligned}
$$

1c) Find $y(t)$ assuming $x(t)=5 \sin (2 t)$

$$
\begin{aligned}
s & =j 2 \\
X & =0-j 5 \\
Y & =\left(\frac{10(s+2)}{(s+0.5)(s+6)(s+7)}\right)_{s=j 2} \cdot(0-j 5) \\
\gg s & =j * 2 ; \\
\gg & =0-j * 5 ; \\
>Y & =10 *(s+2) /((s+0.5) *(s+6) *(s+7)) * X \\
Y= & -1.3541-0.6215 i
\end{aligned}
$$

meaning

$$
y(t)=-1.3541 \cos (2 t)+0.6215 \sin (2 t)
$$

2) Plot the gain vs. frequency for this filter from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

- Low-Pass Filter

$$
Y=\left(\frac{50,000}{(s+4.8)\left(s^{2}+11.3 s+51.8\right)\left(s^{2}+4.69 s+123\right)}\right) X
$$

```
>> w = [0:0.01:50]';
>> s = j*W;
>> G2 = 50e3 ./ ( (s+4.8).*(s.^2 + 11.3*s + 51.8).*(s.^2 + 4.69*s + 123) );
>> plot(w,abs(G2))
>> xlabel('frequency (rad/sec)');
>> ylabel('Gain');
>>
```


3) Plot the gain vs. frequency for this filter from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

$$
Y=\left(\frac{200 \cdot s^{2}}{(s+1 \pm j 5)(s+1 \pm j 15)}\right) X=\left(\frac{200 \cdot s^{2}}{\left(s^{2}+2 s+26\right)\left(s^{2}+2 s+226\right)}\right) X
$$

>> w = [0:0.01:50]';
>> s = j*w;
>> G = 200*s.^2 ./ ((s+1+j*5).*(s+1-j*5).*(s+1+j*15).*(s+1-j*15));
>> plot(w, abs (G))
>> xlabel('frequency (rad/sec)');
>> ylabel('Gain');
>>

Filter Design

4) Write an m-file, cost.m, which

- Is passed an array, z , with each element representing ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$)
- Computes the gain, $\mathrm{G}(\mathrm{s})$ for this value of (a, b, c, d, e, f, g)
- Computes the difference between the gain, G, and the target (above), and
- Returns the sum-squared error in the gain

Step 1: Come up with a model for $\mathrm{G}(\mathrm{s})$. Use piecewise linear funcitons

$$
\begin{array}{ll}
G=0.8 & \mathrm{w}<2 \\
G=0.2 \omega+0.4 & 2<\mathrm{w}<4 \\
G=2-0.2 \omega & 4<\mathrm{w}<6 \\
G=5.6-0.8 w & 6<\mathrm{w}<7 \\
G=0 & \mathrm{w}>7
\end{array}
$$

Code:

```
function [ J ] = costF( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    f = z(6);
    g = z(7);
    w = [0:0.1:10]' + 1e-6;
    s = j*w;
    G1 = 0.8 * (w < 2);
    G2 = (0.2**W+0.4).* (w>2).* (w<4);
    G3 = (2 - 0.2*w).* (w>4).* (w<6);
    G4 = (5.6 - 0.8*w).* (w>6).* (w<7);
    Gideal = G1 + G2 + G3 + G4;
    G = a ./ ( (s.^2 + b*s + c).*(s.^2 + d*s + e).*(s.^2+f*s+g) );
    e = abs(Gideal) - abs(G);
    J = sum(e .^ 2);
    plot(w,abs(Gideal),'r',w,abs(G),'b');
    ylim([0,1.2]);
    pause(0.01);
end
```

5) Use your m-file to determine how 'good' the following filter is:

$$
G(s)=\left(\frac{a}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)\left(s^{2}+f s+g\right)}\right)=\left(\frac{2304}{\left(s^{2}+s+4\right)\left(s^{2}+s+16\right)\left(s^{2}+s+36\right)}\right)
$$

```
>> costF([2304,1,4,1,16,1,36])
ans = 288.4235
```


6) Use fminsearch() to find the 'best' filter of the form

$$
G(s)=\left(\frac{a}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)\left(s^{2}+f s+g\right)}\right)
$$

a) Give the resulting (a, b, c, d, e, f, g)

```
>> [Z,e] = fminsearch('costF',[2304,1,4,1,16,1, 36])
Z = 4004.0 4.7245 7.8955 1.9387 18.0239 1.0002 35.8939
e = 0.1537
```

b) Give the resulting filter, and

$$
G(s)=\left(\frac{4004}{\left(s^{2}+4.72 s+7.89\right)\left(s^{2}+1.93 s+18.02\right)\left(s^{2}+1.00 s+35.89\right)}\right)
$$

c) Plot the 'optimal' filter's gain vs. frequency

Note: You can design some pretty good filters using Matlab and fminsearch, even if you know nothing about filter design.

