ECE 111 - Homework \#11

Please submit BlackBoard

1) Assume the current flowing through a one Henry inductor is shown below. Sketch the voltage.

$$
V=L \frac{d I}{d t}
$$

With $\mathrm{L}=1$, the voltage is the derivative of the current (the slope)

4-Node RLC Circuit

$$
\mathrm{R}=300 \Omega, \mathrm{C}=0.2 \mathrm{~F}, \mathrm{~L}=0.2 \mathrm{H} . \text { Repeat for } 30 \text { nodes for problems 4-6 }
$$

2) Write the dynamic equations for the following 4-stage RLC circuit. (i.e. write the node equations)

From before, the current to a capacitor is $\mathrm{C} * \mathrm{dV} / \mathrm{dt}$

$$
I_{1}=C V_{1}^{\prime}=I_{a}+I_{b}+I_{c}
$$

Take the derivative

$$
C V_{1}^{\prime \prime}=I_{a}^{\prime}+I_{b}^{\prime}+I_{c}^{\prime}
$$

For inductors, $\mathrm{V}=\mathrm{L} \mathrm{dI} / \mathrm{dt}$

$$
\begin{aligned}
& V_{0}-V_{1}=L I_{a}^{\prime} \\
& V_{2}-V_{1}=L I_{b}^{\prime}
\end{aligned}
$$

Substitute

$$
C V_{1}^{\prime \prime}=\left(\frac{V_{0}-V_{1}}{L}\right)+\left(\frac{V_{2}-V_{1}}{L}\right)+\left(\frac{0-V_{1}}{R}\right)^{\prime}
$$

Group terms and divide by C

$$
V_{1}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{0}-\left(\frac{2}{L C}\right) V_{1}+\left(\frac{1}{L C}\right) V_{2}-\left(\frac{1}{R C}\right) V_{1}^{\prime}
$$

Plug in numbers and you get the dynamics for nodes $1 . .3$

$$
\begin{aligned}
& V_{1}^{\prime \prime}=25 V_{0}-50 V_{1}+25 V_{2}-0.0167 V_{1}^{\prime} \\
& V_{2}^{\prime \prime}=25 V_{1}-50 V_{2}+25 V_{3}-0.0167 V_{2}^{\prime} \\
& V_{3}^{\prime \prime}=25 V_{2}-50 V_{3}+25 V_{4}-0.0167 V_{3}^{\prime}
\end{aligned}
$$

Node \#4 is a little different since only inductor is connected

$$
V_{4}^{\prime \prime}=25 V_{3}-25 V_{4}-0.0167 V_{4}^{\prime}
$$

3) Assume Vin $=10 \mathrm{~V}$ and the initial conditions are zero $\left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0\right)$. Solve for the voltages at $\mathrm{t}=3$ seconds. Hint: Solve numerically using Matlab

Code:

- Compute the second devative of each voltage
- Integrate once to get V^{\prime}
- Integrate again to get V

```
V0 = 100;
V1 = 0;
V2 = 0;
V3 = 0;
V4 = 0;
dV1 = 0;
dV2 = 0;
dV3 = 0;
dV4 = 0;
V = [];
t = 0;
dt = 0.02;
while(t < 10)
    ddV1 = 25*V0 - 50*V1 + 25*V2 - 0.0167*dV1;
    ddV2 = 25*V1 - 50*V2 + 25*V3 - 0.0167*dV2;
    ddV3 = 25*V2 - 50*V3 + 25*V4 - 0.0167*dV3;
    ddV4 = 25*V3 - 25*V4 - 0.0167*dV4;
    dV1 = dV1 + ddV1*dt;
    dV2 = dV2 + ddV2*dt;
    dV3 = dV3 + ddV3*dt;
    dV4 = dV4 + ddV4*dt;
    V1 = V1 + dV1*dt;
    V2 = V2 + dV2*dt;
    V3 = V3 + dV3*dt;
    V4 = V4 + dV4*dt;
    t = t + dt;
    plot([0,1,2,3,4],[V0,V1,V2,V3,V4],'.-');
    ylim([-300,300]);
    clc
    disp(t)
    pause(0.01);
    V = [V; V1, V2, V3, V4];
    end
t = [1:length(V)]' * dt;
plot(t,V);
```

Result:

- Note: The wave equation behaves very differently than the heat equation

30-Node RLC Circuit (hint: modify the program Wave.m)

4) Expand the RLC circuit from problem \#2 to 30 nodes. Plot the voltage at $\mathrm{t}=12$ seconds (just after the reflection) for $1 / \mathrm{R}_{30} \mathrm{C}=0.01$
Option 1: Make 30 copies of each section of code
Option 2: Use for-loops
Code:
```
N = 30; % number of nodes
V = zeros(N,1);
dV = zeros(N,1);
t = 0;
dt = 0.02;
while(t < 8)
    if (t < 2) V0 = 100 * ( ( sin(0.5*pi*t) )^2 );
        else V0 = 0;
        end
    ddV(1) = 25*V0 - 50*V(1) + 25*V(2) - 0.0167*dV(1);
    for i=2:N-1
        ddV(i) = 25*V(i-1) - 50*V(i) + 25*V(i+1) - 0.0167*dV(i);
        end
    ddV(N)=25*V(N-1) - 25*V(N) - 0.0167*dV(N);
%
% change this term
    for i=1:N
        dV(i) = dV(i) + ddV(i)*dt;
        V(i) = V(i) + dV(i)*dt;
        end
    t = t + dt;
    plot([0:N],[V0;V],'.-');
    ylim([-150,250]);
    clc
    disp(t)
    pause(0.01);
    end
```


Result with $1 / \mathrm{R} 30 \mathrm{C}=0.01$
5) Plot the voltage at $t=8$ seconds for $1 / R_{30} C=100$

Result with $1 /$ R30 C $=100$
6) Determine experimentally R_{30} so that the reflection is almost zero

Result with $1 / \mathrm{R} 30 \mathrm{C}=5$

