ECE 111 - Homework \#15

ECE 343 Signals- Due Tuesday, December 5th
Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard
Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=5 \sin (t)+3
$$

clipped at +7 V and +1 V . In Matlab:

```
t = [0:0.001:2*pi]';
x = 5*sin(t) + 3;
x = min(x, 7);
x = max(x, 1);
plot(t,x)
```


$x(t) \quad$ Note that $x(t)$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}
$$

Plot $x(t)$ along with it's approximation.

Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.
3) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$

Superposition:

Assume X and Y are related by

$$
Y=\left(\frac{1.5}{s^{3}+1.7 s^{2}+2.2 s+1.2}\right) X
$$

4) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
x(t)=a_{0}
$$

5) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
x(t)=a_{1} \cos (t)+b_{1} \sin (t)
$$

6) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
x(t)=a_{2} \cos (2 t)+b_{2} \sin (2 t)
$$

7) Using the results from problem $2 \& 3$, determine $y(t)$ assuming

$$
x(t)=a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

8) Plot $y(t)$ when $x(t)$ is the sum of $x(t)$ for problems $4 . .7$

- hint: use superposition and sum the results for problem $4 . .7$

