ECE 111 - Homework \#4

Math 129 Linear Algebra. Due Monday, September 18th Please submit via BlackBoard

N equations \& \mathbf{N} unknowns

1) Solve for $\{x, y\}$

$$
\begin{aligned}
& 3 x+7 y=2 \\
& 9 x+6 y=-2
\end{aligned}
$$

2) Solve for $\{x, y, z\}$

$$
\begin{aligned}
& 2 x-9 y-8 z=-3 \\
& -6 x-5 y+7 z=10 \\
& 5 x-9 y=-9
\end{aligned}
$$

3) Solve for $\{a, b, c, d\}$

$$
\begin{aligned}
& a-6 b+5 c+4 d=10 \\
& -2 a+6 b-6 d=-3 \\
& 6 a-b-4 c-7 d=2 \\
& 6 a+3 b+4 d=-5
\end{aligned}
$$

Global CO2 Levels

The CO2 levels measured at Mauna Loa observatory for the past 52 years are:

Problem 4) Determine a parabolic curve fit for this data in the form of

$$
C O_{2} \approx a y^{2}+b y+c
$$

where 'y' is the year. From this data, when do you predict that we will hit

- 400ppm?
- 2000 ppm of CO2? (the same as what was observed during the Permian extinction)

Note: Column \#3 of the data set is year, \#4 is CO2

```
year = DATA(:,3);
CO2 = DATA(:,4);
```


Fargo Temperatures

Average temperatre in Fargo
http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt
note: Column \#1 of the data set is year, column \#4 is average temeperature of March in degrees F

```
year = DATA(:,1);
F = DATA(:,4);
```

5) Using the average temperature in Fargo from 1942 to 2022:

5a) Determine a curve fit of the form of $T=a y+b$

5b) How much has Fargo warmed up over the past 80 years?

```
>> 80 * A(1)
ans = 4.1847e+000
```

March is 4.18 F warmer today than 80 years ago

5c) What will the average temperature in Fargo be in May in the year 2050?

$$
\begin{aligned}
\gg & y=2050 ; \\
\gg & {[y, 1] \star A }
\end{aligned}
$$

In the year 2050, the average temperature in March should be 29.61F

- vs. 17.38 F in 2023

Problem 6-7) Sea Ice: The area covered by sea ice is recored by the National Snow and Ice Data Center:
6) Approximate this data from the years 1979-2022 with a line

$$
\text { Area } \approx a y+b
$$

From this curve fit, when do you expect the Arctic to be ice free? (First time in 5 million years)

7) Approximate this data with a parabolic curve fit:

$$
\text { Area } \approx a y^{2}+b y+c
$$

From this curve fit, when do you expect the Arctic to be ice free?
>> $B=$ [year.^2, year, year. ${ }^{\wedge} 0$];

Problem 8-9: World Temperatures. NASA Goddard has been keep records since 1880 (139 years of data).

8) Determine a least-squares curve fit for this data from the year 1880-1930 in the form of

$$
\delta T=a y+b
$$

Based upon this data, what should the temperature deviation be in the year 2023?
9) Determine a least-squares curve fit for this data from the year 1980-2022 in the form of

$$
\delta T \approx a y^{2}+b y+c
$$

Based upon this data, predict when we will see a 10 degree temperature increase if nothing changes?
10) What does a temperature rise of 10 degrees mean for the planet?

