ECE 111 - Homework \#3

Math 105: Trigonometry. Due Monday, September 11th Please submit via BlackBoard

Polar to Rectangular Conversions

1) Determine the final position of $\mathrm{A}:(\mathrm{x}, \mathrm{y})$

$$
A=\left(10 \angle 20^{0}\right)+\left(5 \angle 65^{0}\right)+\left(3 \angle-15^{0}\right)
$$

2) Determine final position of $\mathrm{B}:(\mathrm{x}, \mathrm{y})$

$$
B=\left(5 \angle 45^{0}\right)+\left(7 \angle-60^{0}\right)+\left(2 \angle 90^{0}\right)
$$

3) Where is B relative to A

- In (x,y) coordinates
- In polar coordinates
i.e. What is $\mathrm{B}-\mathrm{A}$?

Plotting Polar Functions

4) Plot the following functions in Matlab for $0<\theta<6 \pi$

- Note: plot() plots in cartesian coordinates. Each function needs to be converted from polar to rectangular.
a) $r=\cos (\theta+1)$
b) $r=\theta^{2} / 400$
c) $r=\ln (\theta+1)$

Robot Tip Position (Forward Kinematics)

A 2D robot has three arms with lengths of $\{1,0.9,0.8\}$ meters. The final tip positionis

$$
\begin{array}{ll}
x_{1}=\cos \left(\theta_{1}\right) & y_{1}=\sin \left(\theta_{1}\right) \\
x_{2}=x_{1}+0.9 \cos \left(\theta_{1}+\theta_{2}\right) & y_{2}=y_{1}+0.9 \sin \left(\theta_{1}+\theta_{2}\right) \\
x_{3}=x_{2}+0.8 \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) & y_{3}=y_{2}+0.8 \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{array}
$$

5) Plot the tip position ($\mathrm{x} 3, \mathrm{y} 3$) for

$$
\theta_{1}=45^{0} \quad \theta_{2}=-70^{0} \quad \theta_{3}=-100^{0}
$$

6) Plot the tip position ($x 3, y 3$) for

$$
\theta_{1}=135^{0} \quad \theta_{2}=-70^{0} \quad \theta_{3}=-45^{\circ}
$$

Robot Tip Position (Inverse Kinematics \& fminsearch())

7) Write a Matlab function which

- Is passed the angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$,
- Computes the tip position, and
- Returns the distance from the tip position and point ($\mathrm{x}=1.2, \mathrm{y}=1.2$)

8) Use the fminsearch() to determine the joint angles which place the robot at ($x=1.2, y=1.2$)

Problem 5-8: 2D Robotic Arm

