ECE 111 - Homework \#2

Math 103 - Algebra, Functions \& Solving $f(x)=0$. Due Monday, September 4th
Please submit via BlackBoard

Newton's Method

1) Let x and y be related by:

$$
y=x^{3}-x^{2}-6 x+1
$$

Use Newton's method to solve for x when

- $y=0$
- $y=10$

2) Let x and y be related by

$$
\begin{aligned}
& y=\sin (2 x) \\
& y=(x+1)(x-1)
\end{aligned}
$$

Find all solutions using graphical methods. (Plot both functions on the same graph. The solution is when the two functions intersect.)
3) Find the solutions to problem \#2 using Newton's method.

Let

$$
\begin{aligned}
& y_{1}=\sin (2 x) \\
& y_{2}=(x+1)(x-1) \\
& e=y_{1}-y_{2}
\end{aligned}
$$

Find the solutions for $\mathrm{f}(\mathrm{x})=0$ using Netwon's method.
(over)

Newton's Method with a Thermistor

Assume the temperature - resistance relationship of a thermistor is:

$$
\begin{aligned}
& \quad R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega \\
& \qquad e=R-R_{0} \\
& \mathrm{~T}=[-20: 0.5: 30]^{\prime} ; \\
& \mathrm{R}=1000 * \exp (3905 . /(\mathrm{T}+273)-3905 / 298) ; \\
& \mathrm{plot}(\mathrm{~T}, \mathrm{R}) ;
\end{aligned}
$$

4) Write a Matlab funciton which

- Is passes the temeprature T, and
- Returns e (the difference between R and R 0)

5) Use Newton's method to find the temperature when

- $\mathrm{R} 0=2000$ Ohms
- $\mathrm{R} 0=5000 \mathrm{Ohms}$

Newton's Method and a Voltage Divider

Assume

$$
\begin{aligned}
& R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega \\
& V=\left(\frac{R}{R+1000}\right) \cdot 10 V \\
& e=V-V_{0}
\end{aligned}
$$

6) Write a Matlab function which

- Is passed the temperature, T, and
- Returns the error, e.

7) Use Netwon's method to determine the temperature when

- $\mathrm{V} 0=8.00 \mathrm{~V}$
- $\mathrm{V} 0=6.00 \mathrm{~V}$

