ECE 111 - Homework \#13

Week \#13 - ECE 320 Electronics I. Due 11am, Tuesday November 22nd

Assume the VI characteristics for 1N4004 diodes are:

$$
V_{d}=0.038 \cdot \ln \left(\frac{I_{d}}{7.7 \cdot 10^{-11}}+1\right) \quad I_{d}=7.7 \cdot 10^{-11}\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

1) Write the voltage node equations for the following circuit.

Start with the diode equations

$$
\begin{aligned}
& I_{d 1}=7.7 \cdot 10^{-11}\left(\exp \left(\frac{V_{2}}{0.038}\right)-1\right) \\
& I_{d 2}=7.7 \cdot 10^{-11}\left(\exp \left(\frac{V_{1}}{0.038}\right)-1\right)
\end{aligned}
$$

Add in the voltage node equations

$$
\begin{aligned}
& V_{0}=10 \\
& \left(\frac{V_{1}-V_{0}}{100}\right)+\left(\frac{V_{1}-V_{2}}{20}\right)+I_{d 2}=0 \\
& \left(\frac{V_{2}-V_{1}}{20}\right)+I_{d 1}=0
\end{aligned}
$$

2) Solve using fminsearch and MATLAB

First, write a Matlab funciton:

```
function [ J ] = diode2( X )
    V0 = 10;
    V1 = X(1);
    V2 = X(2);
    Id1 = 7.7e-11 * ( exp( V2 / 0.038 ) - 1);
    Id2 = 7.7e-11 * ( exp( V1 / 0.038 ) - 1);
    E1 = (V1 - V0)/100 + (V1 - V2)/20 + Id2;
E2 = (V2 - V1)/20 + Id1;
    J = E1^2 + E2^2;
end
```

Solve using fminsearch()

```
>> [V,e] = fminsearch('diode2',[1,2])
v = % V1 % v2
e = 1.6417e-011
```

3) Check your results using CircuitLab and 1N4004 diodes

- The results are almost the same
- Diodes in parallel don't share: one takes the brunt of the current

4) Write the voltage node equations for the following circuit.

Problem 4-6
Start with the diode equations

$$
\begin{aligned}
& I_{d 1}=7.7 \cdot 10^{-11}\left(\exp \left(\frac{V_{0}-V_{1}}{0.038}\right)-1\right) \\
& I_{d 2}=7.7 \cdot 10^{-11}\left(\exp \left(\frac{V_{3}-0}{0.038}\right)-1\right) \\
& I_{d 3}=7.7 \cdot 10^{-11}\left(\exp \left(\frac{V_{2}-V_{4}}{0.038}\right)-1\right)
\end{aligned}
$$

Now write the voltage node equations

$$
\begin{aligned}
& V_{0}=10 \\
& -I_{d 1}+\left(\frac{V_{1}-V_{3}}{100}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{200}\right)+I_{d 3}+\left(\frac{V_{2}}{300}\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{100}\right)+I_{d 2}+\left(\frac{V_{3}-V_{4}}{400}\right)=0 \\
& \left(\frac{V_{4}-V_{3}}{400}\right)+\left(\frac{V_{4}}{500}\right)-I_{d 3}=0
\end{aligned}
$$

5) Solve using fminsearch and MATLAB

Write a Matlab funciton

```
function [ J ] = diode3( X )
    V0 = 10;
    V1 = X(1);
    V2 = X(2);
    V3 = X(3);
    V4 = X(4);
    Id1 = 7.7e-11 * ( exp( (V0-V1) / 0.038 ) - 1);
    Id2 = 7.7e-11 * ( exp( (V3-0) / 0.038 ) - 1);
    Id3 = 7.7e-11 * ( exp( (V2-V4) / 0.038 ) - 1);
    E1 = -Id1 + (V1 - V3)/100 + (V1 - V2)/200;
    E2 = (V2 - V1)/200 + Id3 + (V2/300);
    E3 = (V3-V1)/100 + Id2 + (V3-V4)/400;
    E4 = (V4-V3)/400 + (V4/500) - Id3;
    J = E1^2 + E2^2 + E '^^2 + E4^2;
end
```

Solve using fminsearch...
It helps if you have a decent initial guess. A bad guess can wind up in la-la land

```
>> [V,e] = fminsearch('diode3',[1,2,3,4])
V = 9.1752 -15.0127 0.7654 -15.7831
e=0.0297
```

(negative voltages are not possible with this circuit)

Try some better guesses

```
>> diode3([1,2,3,4])
ans = 3.1004e+185
>> diode3([9,8,7,6])
ans = 5.9733e+139
>> diode3([9,8,0.7,0.6])
ans = 1.6607e+149
>> diode3([9,0.8,0.7,0.6])
ans = 422.0521
```

Better, start from here

```
>> [V,e] = fminsearch('diode3',[9,0.8,0.7,0.6])
V = 0.1936 0.6789 0.7905 0.6243
e = 0.0016
```

e is still fairly large, so keep itterating

```
>> [V,e] = fminsearch('diode3',V)
\begin{tabular}{ccccc} 
& V 1 & V 2 & V 3 & V 4 \\
\(\mathrm{~V}=\) & 9.1989 & 3.9907 & 0.7935 & 3.271
\end{tabular}
e = 4.8881e-013
```

Pretty close to zero. This is a valid answer
6) Check your results using CircuitLab and 1N4004 diodes

- The results are almost the same

