ECE 111 - Homework \#12

Week \#12: ECE 341 Random Processes. Due 11am November 15th

Chi-Squared Tests

Problem 1: The following Matlab code generates 240 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:240
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.
The results I got were:

```
RESULT = 40 40 40 42 40
```

Calculate the chi-squared score

Roll	p	$\mathrm{n}^{*} \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	40	40	0
2	$1 / 6$	40	44	0.4
3	$1 / 6$	40	42	0.1
4	$1 / 6$	40	38	0.1
5	$1 / 6$	40	39	0.03
6	$1 / 6$	40	37	0.23
			Total	0.85

From StatTrek, a chi-squared critical value of 0.85 corresponds to a probability of 0.02626
There is a $\mathbf{2 . 6 \%}$ chance this die is loaded

Problem 2: The following Matlab code generates 240 rolls of a loaded six-sided die (5\% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:240
    if(rand < 0.05)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.
The result I got was

RESULT	$=$	39	30	37	40	42

Calculating the Chi-Squared critical value:

Roll	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	40	39	0.03
2	$1 / 6$	40	30	2.5
3	$1 / 6$	40	37	0.23
4	$1 / 6$	40	40	0
5	$1 / 6$	40	42	0.1
6	$1 / 6$	40	52	3.6
			Total	$\mathbf{6 . 4 5}$

From StatTrek, a Chi-Squred critival value of 6.45 corresponds to a probability of 0.73514
There is a $\mathbf{7 3 . 5 \%}$ chance that this die is loaded
(note: 5% loading is pretty hard to detect)

Am I Psychic?

Problem \#3: Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

Pediction	p	$\mathrm{n} * \mathrm{p}$	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
Correct	$1 / 4$	13	19	2.77
Incorrect	$3 / 4$	39	33	0.92
			Total	3.69

Flipping throgh a deck of cards and predicting the suit, I was

- Correct 19 times
- Incorrect 33 times

Put this data into a table and compute the chi-squared score

From StatTrek, a chi-squared score of 3.69 with 1 degree of freedom corresponds to a probabiliy of 0.95

There is $\mathbf{9 5 \%}$ chance that I wasn't just guessing

and a 5\% chance I got lucky... before I mortgage the house and go to the cassino, I might want to repeat this test to see if the result is repeatable

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	\square
Chi-square critical value (CV)	\square 3.69
	$\square P\left(X^{2}<3.69\right)$
$P\left(X^{2}>3.69\right)$	0.95

Monte-Carlo: $\mathbf{y}=\mathbf{2 d} \mathbf{d} \mathbf{+ 3 d 6} \mathbf{~ + ~ 4 d 8}$

5) Using a Monte Carlo simulation with 100,000 dice rolls, determine

- The probability of rolling 40 or more $(y>39.5)$
- The 90% confidence interval for y (5% of the rolls will be less than the lower bound and 5% of the rolls will be more than the upper bound)

Step 1: Roll the dice 100,000 times

- Note that the bar chart is a bell-shaped curve. This is the central limit theorem in action...

```
RESULT = zeros(1,60);
for n=1:1e5
    d4 = ceil(4*rand(1,2));
    d6 = ceil(6*rand(1,3));
    d8 = ceil(8*rand(1,4));
    y = sum(d4) + sum(d6) + sum(d8);
    RESULT(y) = RESULT(y) + 1;
end
bar(RESULT)
```


a) The probability of rolling 40 or more

Take the data for y is 50 or more:
>> bar(RESULT(40:60))

Add up the number of times you rolled 40 or more, divided by the sample size $(100,000)$

```
>> sum(RESULT(40:60)) / 1e5
ans = 0.1503
```

In $\mathbf{1 0 0 , 0 0 0}$ rolls, $\mathbf{1 5 . 0 3 \%}$ resutled in a sum of $\mathbf{4 0}$ or more

- There is a $\mathbf{1 5 . 0 3 \%}$ chance of rolling 40 or more

b) 90% confidence interval: $24<=$ roll <= 43

- 90% of the time you will roll numbers bewteen 24 and 43

Upper bound keep guessing the upper bound until 5% of the results are in the tail

```
>> sum(RESULT(40:60))/1e5
ans = 0.1503
>> sum(RESULT(41:60))/1e5
ans = 0.1126
>> sum(RESULT(42:60))/1e5
ans = 0.0811
>> sum(RESULT(43:60))/1e5
ans = 0.0570
>> sum(RESULT(44:60))/1e5
ans = 0.0385
```

Lower Bound keep guessing the upper bound until 5\% of the results are in the tail

```
>> sum(RESULT(1:23))/1e5
ans = 0.0386
>> sum(RESULT(1:24))/1e5
ans = 0.0567
>> sum(RESULT(1:25))/1e5
ans = 0.0807
```

>>

Normal Approximation

Rather than roll the dice 100,000 times, can you compute

- The probablity of rolling more than 39.5 , and
- The 90% confidence interval?

First, determine the mean and standard deviation for a single die

```
d4 = [1,2,3,4];
m4 = mean(d4); % mean
v4 = sum( (d4 - m4).^2) / 4; % variance
d6 = [1,2,3,4,5,6];
m6 = mean(d6);
v6 = sum( (d6 - m6).^2) / 6;
d8 = [1,2,3,4,5,6,7,8];
m8 = mean(d8);
v8 = sum( (d8 - m8).^2) / 8;
```

When you add distributions,

- The means add, and
- The variance adds

```
my = 2*m4 + 3*m6 + 4*m8; % mean
vy = 2*v4 + 3*v6 + 4*v8; % variance
sy = sqrt(vy); % standard deviation
my = 33.5000
    mean of y
sy = 5.6789 standard deviation of y
```

You can get an idea of what the distribution looks like using a normal pdf (not required)

```
>> s = [-4:0.01:4]';
>> p = exp(-s.^2 / 2);
>> plot(s*5.6789+33.5,p);
>> xlabel('Die Roll');
>> ylabel('p')
```


Probability y $>\mathbf{3 9 . 5}$
To find the probability of rolling more than 39.5 , determine the area to the right (find the z -score)

```
>> z = (39.5 - my) / sy
```

From a normal table (or StatTrek), convert this to a probability

- From StatTrek, this corresponds to a probability of 0.14537
- There is a 14.537% chance the sum will be more than 39.5

Note:

- This is almost the same answer we got with 100,000 die rolls with a Monte Carlo simulation
- Zero die rolls were needed to determine this probability
- If it costs $\$ 10 /$ roll, that's a lot of money

$\mathbf{9 0 \%}$ Confidence Interval:

From StatTrek, determine the z -score corresponding to 5\% tails

$$
z=1.64485
$$

The 90% confidence interval is then

```
>> Lower = my - 1.64485*sy
>> Upper = my + 1.64485*sy
Lower = 24.1590
Upper = 42.8410
```

or

24.15 <roll < 42.84

Note: With a Monte Carlo simulation and 100,000 rolls, the result was

$$
24 \leq \text { roll } \leq 43
$$

I got this answer using a Normal approximation without having to roll any dice

t-Tests

Suppose you don't know the mean and standard deviation. Can I determine

- The probability of rolling more than 39.5 , or
- The 90% confidence interval
without having to roll the dice 100,000 times?
The answer is yes:
- Roll the dice a few times (more than one, less than a million)
- Determine the mean and standard deviation of the result,
- Then use a student-t table to compute these probabilities

Problem 6: Using Matlab, determine five values for Y

$$
\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

Step \#1: Collect Data (roll the dice five times)

```
DATA = [];
for i=1:5
    d4 = ceil( 4*rand(2,1) );
    d6 = ceil( 6*rand(3,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    DATA = [DATA, Y];
    end
DATA = 32 39 32 38 35 41
```

Step 2: Calculate the mean and standard deviation from your data

```
x = mean(DATA)
s = std(DATA)
n = length(DATA)
x = 37 mean
s = 3.5355 standard deviation
n = 5 sample size
```

Step 3: Use a student-t test to answer your questions

What is the probabilitu of rolling more than 39.5?

Use a t-test to determine the probabillity of scoring more than 39.5 points. The t-score is

```
>> t = (39.5 - x) / s
t = 0.7071
```

From StatTrek, this corresponds to $\mathrm{p}=0.2592$
There is a $\mathbf{2 5 . 9 2 \%}$ chance the sum will be more than 39.5

What is the $\mathbf{9 0 \%}$ confidence interval?

From StatTrek, 5\% tails along with 4 degrees of freedom corresponds to a t-score of 2.13281

```
Lower = x - 2.13281*s
Upper = x + 2.13281*s
Lower = 29.4594
Upper = 44.5406
```

With a sample size of 5, I predict the 90% confidence interval will be

$$
\bar{x}-2.13281 s<\operatorname{roll}<\bar{x}+2.13281 s
$$

$29.4594<$ roll <44.5406
$24.1591<$ roll <42.8409

$$
\mathrm{p}=0.9, \text { t-test }
$$

normal approximation (problem \#4)

This is a little off, but then it only uses a sample size of five

Problem 7: Using Matlab, determine ten values for Y

```
    Y=2d4+3d6+4d8
DATA = [];
for i=1:10
    d4 = ceil( 4*rand(2,1) );
    d6 = ceil( 6*rand(3,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    DATA = [DATA, Y];
    end
DATA
x = mean(DATA)
s = std(DATA)
DATA = }\begin{array}{llllllllllll}{31}&{35}&{38}&{32}&{42}&{32}&{32}&{39}&{34}&{32}&{34}&{34}
x = 34
s = 4.9889
```

7a) From this, determine the mean and standard deviation of your data set. see above

7b) Use a t-test to determine...
The probabillity of scoring more than 39.5 points

$$
t=\left(\frac{39.5-\bar{x}}{s}\right)=\left(\frac{39.5-34}{4.9889}\right)=1.1025
$$

From StatTrek, this corresponds to a probability of 14.943%

$$
\begin{aligned}
& p=14.943 \% \\
& p=14.537 \%
\end{aligned}
$$

t-test, sample size $=10$
normal pdf, sample size infinity

The $\mathbf{9 0 \%}$ confidence interval

With 9 degrees of freedom, the t-score for 5% tails is

$$
\mathrm{t}=1.83203
$$

The 90% confidence interval is

$$
\bar{x}-1.83203 s<\operatorname{roll}<\bar{x}+1.83203 s
$$

24.8602 <roll < 43.1398
24.1591 < roll < 42.8409

$$
\begin{aligned}
& p=0.9, \text { sample size }=10 \\
& p=0.9, \text { sample size }=\text { infinity }(\text { problem } 4)
\end{aligned}
$$

Summary

The probability of Rolling 39.5 or more is

Method	$\mathrm{p}(\mathrm{y}>39.5)$	\# Rolls
Monte-Carlo	15.03%	100,000
Normal Approx	14.54%	0
t-Test	25.92%	5
t-Test	14.94%	10

The 90% confidene inteval is

Method	90% Confidence Interval	\# Rolls
Monte-Carlo	$[24,43]$	100,000
Normal Approx	$(24.15,42.54)$	0
t-Test	$(29.45,44.54)$	5
t-Test	$(24.86,43.13)$	10

Using statistics, you can determine the same information without having to roll the dice 100,000 times

- If each experiment costs $\$ 10$ to run, that can save a lot of money.

