ECE 111 - Homework \#11

Week \#11 - ECE 343 Signals- Due Tuesday, November 8th

Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=\max (0,5 \sin (t)-3)
$$

or in Matlab:

```
t = [0:0.001:2*pi]';
x = max(0, 5*sin(t) - 3);
plot(t,x)
```


$x(t) \quad$ Note that $x(t)$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> t = [0:0.001:2*pi]';
x = max(0, 5*sin(t) - 3);
plot(t,x)
>> B = [t.^^0,t,t.^2,t.^^3,t.^^4,t.^ 5];
>> A = inv(B'*B)*B'*x
a0 -8.6820e-001
a1 3.6333e+000
a2 -1.6422e+000
a3 1.0495e-001
a4 4.2435e-002
a5 -5.0751e-003
>> plot(t,x,'b',t,B*A,'r')
```


$x(t)$ (blue) and curve fit (red)
Note:

- It's not a great curve-fit: more terms would help
- The results doesn't help in finding $y(t)$. $x(t)$ isn't in the form of sinusoids.

Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

```
>> B = [t.^0, cos(t),\operatorname{sin}(t),\operatorname{cos}(2*t),\operatorname{sin}(2*t),\operatorname{cos}(3*t),\operatorname{sin}(3*t)];
>> A = inv(B'*B)**'*x
A =
a0 3.8776e-001
a1 4.0370e-005
b1 7.1189e-001
a2 -5.4321e-001
b2 9.4496e-008
a3 4.0247e-005
b3 -3.2595e-001
>> plot(t,x,'b',t,B*A,'r')
>>
```


Note:

- This is a better approximation
- More terms would improve the result
- The result $*_{i s} *$ useful: $\mathrm{x}(\mathrm{t})$ is now in terms of sine waves

Superposition

3) Assume X and Y are related by

$$
Y=\left(\frac{0.5}{s^{2}+s+0.5}\right) X
$$

3a) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$

```
>> a0 = mean(x)
a0 = 3.8769e-001
>> a1 = 2*mean(x .* cos(t))
a1 = 8.4944e-008
>> b1 = 2*mean(x .* sin(t))
b1 = 7.1180e-001
>> a2 = 2*mean(x .* cos(2*t))
a2 = -5.4318e-001
>> b2 = 2*mean(x .* sin(2*t))
b2 = 1.0195e-007
>> a3 = 2*mean(x.* cos(3*t))
a3 = -3.7419e-008
>> b3 = 2*mean(x .* sin(3*t))
b3 = -3.2591e-001
```

Note the the results are the same as we got using least squares
Fourier Transform is nothing more than a least-squares curve fit with the basis consisting of sinusoids

	Least Squres	Fourier Coeff
a0	0.38776	0.38769
a1	0.00004	0
b1	0.71189	0.71180
a2	-0.54321	-0.54318
b2	0	0
a3	0.00004	0
b3	-0.32595	-32591

3b) Plot $\mathrm{x}(\mathrm{t})$ and its Fourier approximation taken out to $3 \mathrm{rad} / \mathrm{sec}$ It's the same result as problem \#2-the graph will also be the same
4) Determine the gain of this filter at each frequency present in problem \#2 (i.e. $0,1,2,3 \mathrm{rad} / \mathrm{sec}$)

- note: You should get a complex number for the gain at each frequency

5a) Determine the phasor representation for $\mathrm{Y}(\mathrm{jw})$ at each frequency.

- note: You should get a complex number for Y - the phasor representation for $y(t)$ at $0,1,2$, and 3 $\mathrm{rad} / \mathrm{sec}$

Use superpositon to find $\mathrm{Y}(\mathrm{jw})$ at each frequency
DC

```
>> s = 0;
>> G0 = 0.5 / (s^2 + s + 0.5)
G0 = 1
>> x0 = a0
x0 = 3.8769e-001
>> y0 = G0 * x0
y0 = 3.8769e-001
```

meaning

$$
y_{0}=0.38769
$$

1 rads/sec

```
>> s = j;
>> x1 = a1 - j*b1
x1 = 8.4944e-008 -7.1180e-001i
>> G1 = 0.5 / (s^2 + s + 0.5)
G1 = -2.0000e-001 -4.0000e-001i
>> y1 = G1 * x1
y1 = -2.8472e-001 +1.4236e-001i
```

meaning

$$
y_{1}=-0.28472 \cos (t)-0.14236 \sin (t)
$$

$2 \mathrm{rad} / \mathrm{sec}$

```
>> s = j*2;
>> x2 = a2 - j*b2
x2 = -5.4318e-001 -1.0195e-007i
>>G2 = 0.5 / (s^2 + s + 0.5)
G2 = -1.0769e-001 -6.1538e-002i
>> y2 = G2 * x2
y2 = 5.8496e-002 +3.3426e-002i
```

meaning

$$
y_{2}=0.058496 \cos (2 t)-0.033426 \sin (2 t)
$$

$3 \mathrm{rad} / \mathrm{sec}$

```
>> x3 = a3 - j*b3
x3 = -3.7419e-008 +3.2591e-001i
>> s = j*3;
>>G3 = 0.5 / (s^2 + s + 0.5)
G3 = -5.2308e-002 -1.8462e-002i
>> y3 = G3 * x3
y3 = 6.0167e-003 -1.7047e-002i
```

meaning

$$
y_{3}(t)=0.0060167 \cos (3 t)+0.017047 \sin (3 t)
$$

5b) From this, determine $y(t)$
The total answer is the sum of all of the harmonics

$$
\begin{aligned}
y(t)= & y_{0}+y_{1}+y_{2}+y_{3} \\
y(t)= & 0.38769 \\
& -0.28472 \cos (t)-0.14236 \sin (t) \\
& +0.058496 \cos (2 t)-0.033426 \sin (2 t) \\
& +0.0060167 \cos (3 t)+0.017047 \sin (3 t)
\end{aligned}
$$

6) $\operatorname{Plot} x(t)$ and $y(t)$.
```
>> y = y0;
>> y = y + real(y1)*cos(t) - imag(y1)*sin(t);
>> y = y + real(y2)*\operatorname{cos(2*t) - imag(y2)*sin(2*t);}
>> y = y + real(y3)*cos(3*t) - imag(y3)*sin(3*t);
>> plot(t,x,'b',t,y,'r');
```


$x(t)$ (blue) and $y(t)(r e d)$

Note:
This isn't exact.

- $y(t)$ contains harmonics out to infinity.
- We only went out to $3 \mathrm{rad} / \mathrm{sec}$

It's close

- X(jw) gets smaller as frequency goes up
- $G(j w)$ gets smaller as frequenc goes up
- $\mathrm{Y}(\mathrm{jw})=\mathrm{G}(\mathrm{jw})^{*} \mathrm{X}(\mathrm{jw})$ goes to zero fairly quickly
- Ignoring the higher-frequency term doesn't affect $y(t)$ very much

