ECE 111 - Homework \#8

Week \#8: ECE 351 Electromagnetics - - Due 11am Tuesday, October 18th

1) Assume the current flowing through a one Henry inductor is shown below. Sketch the voltage.

$$
V=L \frac{d I}{d t}
$$

Problem 2-3) 4-Node RLC Circuit

$$
\mathrm{R}=1000 \Omega, \mathrm{C}=0.1 \mathrm{~F}, \mathrm{~L}=0.3 \mathrm{H} . \text { Repeat for } 30 \text { nodes for problems 4-6 }
$$

2) Write the dynamic equations for the following 4-stage RLC circuit. (i.e. write the node equations)

$$
\begin{aligned}
& \left(V_{0}-V_{1}\right)=L \dot{I}_{a} \\
& \left(V_{2}-V_{1}\right)=L \dot{I}_{b} \\
& I_{1}=C \dot{V}_{1}=I_{a}+I_{b}+I_{c} \\
& C \ddot{V}_{1}=\dot{I}_{a}+\dot{I}_{b}+\dot{I}_{c} \\
& C \ddot{V}_{1}=\left(\frac{V_{0}-V_{1}}{L}\right)+\left(\frac{V_{2}-V_{1}}{L}\right)+\left(\frac{0-\dot{V}_{1}}{R}\right)
\end{aligned}
$$

Simplifying and repeating for all four nodes (note \#4 misses one term since there is no node 5)

$$
\begin{aligned}
& \ddot{V}_{1}=\left(\frac{1}{L C}\right) V_{0}-\left(\frac{2}{L C}\right) V_{1}+\left(\frac{1}{L C}\right) V_{2}-\left(\frac{1}{R C}\right) \dot{V}_{1} \\
& \ddot{V}_{2}=\left(\frac{1}{L C}\right) V_{1}-\left(\frac{2}{L C}\right) V_{2}+\left(\frac{1}{L C}\right) V_{3}-\left(\frac{1}{R C}\right) \dot{V}_{2} \\
& \ddot{V}_{3}=\left(\frac{1}{L C}\right) V_{2}-\left(\frac{2}{L C}\right) V_{3}+\left(\frac{1}{L C}\right) V_{4}-\left(\frac{1}{R C}\right) \dot{V}_{3} \\
& \ddot{V}_{4}=\left(\frac{1}{L C}\right) V_{3}-\left(\frac{1}{L C}\right) V_{4}-\left(\frac{1}{R C}\right) \dot{V}_{4}
\end{aligned}
$$

Plugging in numbers

$$
\begin{aligned}
& \ddot{V}_{1}=33.33 V_{0}-66.67 V_{1}+33.33 V_{2}-0.01 \dot{V}_{1} \\
& \ddot{V}_{2}=33.33 V_{1}-66.67 V_{2}+33.33 V_{3}-0.01 \dot{V}_{2} \\
& \ddot{V}_{3}=33.33 V_{2}-66.67 V_{3}+33.33 V_{4}-0.01 \dot{V}_{3} \\
& \ddot{V}_{4}=33.33 V_{3}-33.33 V_{4}-0.01 \dot{V}_{4}
\end{aligned}
$$

3) Assume Vin $=10 \mathrm{~V}$ and the initial conditions are zero $\left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0\right)$. Solve for the voltages at $\mathrm{t}=3$ seconds. Hint: Solve numerically using Matlab

Node voltages at $\mathrm{t}=3.00$ seconds

Code:

```
% ECE 111 Lecture #8
% 4-Stage RLC Filter
V0 = 10;
V1 = 0;
V2 = 0;
V3 = 0;
V4 = 0;
dV1 = 0;
dV2 = 0;
dV3 = 0;
dV4 = 0;
V = [];
t = 0;
dt = 0.02;
while(t < 2.99)
    ddV1 = 33.33*V0 - 66.67*V1 + 33.33*V2 - 0.01*dV1;
    ddV2 = 33.33*V1 - 66.67*V2 + 33.33*V3 - 0.01*dV2;
    ddV3 = 33.33*V2 - 66.67*V3 + 33.33*V4 - 0.01*dV3;
    ddV4 = 33.33*V3 - 33.33*V4 - 0.01*dV4;
    dV1 = dV1 + ddV1*dt;
    dV2 = dV2 + ddV2*dt;
    dV3 = dV3 + ddV3*dt;
    dV4 = dV4 + ddV4*dt;
    V1 = V1 + dV1*dt;
    V2 = V2 + dV2*dt;
    V3 = V3 + dV3*dt;
    V4 = V4 + dV4*dt;
    t = t + dt;
    plot([0,1,2,3,4],[V0,V1,V2,V3,V4],'.-');
    ylim([-30,30]);
    clc
    disp(t)
    pause(0.01);
    V = [V; V1, V2, V3, V4];
    end
t = [1:length(V)]' * dt;
plot(t,V);
```


Problem 4-6) 30-Node RLC Circuit (hint: modify the program Wave.m)

4) Expand the RLC circuit from problem \#2 to 30 nodes. Plot the voltage at $\mathrm{t}=8$ seconds (just after the reflection) for $1 / \mathrm{R}_{30} \mathrm{C}=0.01$
This is where matricies and for-loops are useful.

- You could take the previous code and repeat each section 30 times, or
- Place in a for-loop that counts to 30

The latter is more efficient. The trick is

- The first node is a little different: V0 is a valid Matlab variable but $\mathrm{V}(0)$ is not (indicies start at 1)
- The last node has a slightly different formula.

Nodes 2.. 29 can be placed in a for-loop however

```
% ECE 111 Lecture #8
% 30-Stage RLC Filter
N = 30; % number of nodes
V = zeros(N,1);
dV = zeros(N,1);
t = 0;
dt = 0.02;
while(t < 8)
    if (t < 2) V0 = 10 * ( ( sin(0.5*pi*t) )^2 );
        else V0 = 0;
        end
    ddV(1) = 33.33*V0 - 66.67*V(1) + 33.33*V(2) - 0.01*dV(1);
    for i=2:N-1
        ddV(i) = 33.33*V(i-1) - 66.67*V(i) + 33.33*V(i+1) - 0.01*dV(i);
        end
    ddV (N) = 33.33*V(N-1) - 33.33*V(N) - 0.01*dV (N);
%
%
                                    change this term
    for i=1:N
        dV(i) = dV(i) + ddV(i)*dt;
        V(i) = V(i) + dV(i)*dt;
        end
    t = t + dt;
    plot([0:N],[V0;V],'.-');
    ylim([-15,25]);
    clc
    disp(t)
    pause(0.01);
    end
```


Positive reflection with R30 $=1000$ Ohms
5) Plot the voltage at $t=8$ seconds for $1 / \mathrm{R}_{30} \mathrm{C}=100$

Negative reflection when R30 $=0.1$ Ohm
6) Determine experimentally R_{30} so that the reflection is almost zero

By trial-and-error

$$
\begin{aligned}
& 1 / \mathrm{R} 30 * \mathrm{C}=5 \\
& \mathrm{R} 30=2 \mathrm{Ohms}
\end{aligned}
$$

