ECE 111 - Homework \#5

Week \#5: EE 206 Circuits I. - Due 11am Tuesday, September 27th

1) A resistor has the following volts / amps / resistance / power. Determine the missing parameters:

	Volts	Amps	Ohms	Watts
a)	40 V	1.5 A	26.67	60 W
b)	40 V	10 A	4	400 W
c)	24 V	5 A	4.8	120
d)	40 V	2.5 A	16	100

Sample Calculations

$$
V=I R
$$

$$
P=V I
$$

a)

$$
\begin{aligned}
& R=\left(\frac{V}{I}\right)=\left(\frac{40 V}{1.5 A}\right)=26.67 \Omega \\
& P=V I=(40 V)(1.5 A)=60 W
\end{aligned}
$$

b)

$$
I=\left(\frac{V}{R}\right)=\left(\frac{40 V}{4 \Omega}\right)=10 A
$$

$$
P=V I=(40 V)(10 \mathrm{~A})=400 \mathrm{~W}
$$

c)

$$
\begin{aligned}
& V=\left(\frac{P}{I}\right)=\left(\frac{120 W}{5 A}\right)=24 V \\
& R=\left(\frac{V}{I}\right)=\left(\frac{24 V}{5 A}\right)=4.8 \Omega
\end{aligned}
$$

d)

$$
\begin{aligned}
& I=\left(\frac{P}{V}\right)=\left(\frac{100 W}{40 V}\right)=2.5 A \\
& R=\left(\frac{V}{I}\right)=\left(\frac{40 V}{2.5 A}\right)=16 \Omega
\end{aligned}
$$

Kirchoff's Laws:

2) Use conservation of voltage to determine the unknown voltages

3) Use conservation of current to determine the unknown currents

Resistors in Series and Parallel

4) Find the total resistance Rab

$\begin{array}{ll}300+200=500 & \text { series } \\ 500 \| 600=272.72 & \text { parallel }\end{array}$
$272.72+400=672.72 \quad$ series
$672.72 \| 500=286.82 \quad$ parallel
$286.82+100=386.82 \quad$ series
Rab $=\mathbf{3 8 6 . 8 2}$ Ohms
5) Find the total resistance Rab

$140+40=180$
180 || $120=72$
$72+30=102$
102 || $100=50.49$
$50.49+20=70.49$
Rab $=$ 70.49 Ohms
6) Use CircuitLab to find the resistance Rab (apply a 1V source and determine the current draw)

The circuit draws 14.19 mA with a 1 V source

$$
R=\left(\frac{V}{I}\right)=\left(\frac{1 V}{14.19 \mathrm{~mA}}\right)=70.47 \Omega
$$

This matches calculations from problem \#5 (with some rounding errors)

Voltage Division

7) Use voltage division to find V1, V2, and V3.

$$
\begin{aligned}
& V_{1}=\left(\frac{50.495}{50.495+20}\right) V_{0}=7.1629 \mathrm{~V} \\
& V_{2}=\left(\frac{72}{72+30}\right) V_{1}=5.0562 \mathrm{~V} \\
& V_{3}=\left(\frac{140}{140+40}\right) V_{2}=3.9326 \mathrm{~V}
\end{aligned}
$$

8) Use CircuitLab to find V1, V2, V3.

CircuitLab results match calculations

