ECE 111 - Homework \#1

Week \#1: Algebra. Due 11am Tuesday, August 30th

functions poly and roots:

1) Use MATLAB, find the roots the the following polynomials:
a) $x^{3}-55 x^{2}+1004 x-6080=0$

In Matlab, solving two different ways:

```
>> P = [1,-55,1004,-6080]
P= 1 
>> roots(P)
    20.0000
    19.0000
    16.0000
>> roots([1,-55,1004,-6080])
    20.0000
    19.0000
    16.0000
>>
```

b) $x^{4}-24 x^{3}+209 x^{2}-786 x+1080=0$
$>P=[1,-24,209,-786,1080]$
$\begin{array}{llllll}P= & 1 & -24 & 209 & -786 & 1080\end{array}$
>> roots(P)
9.0000
6.0000
5.0000
4.0000
c) $\quad x^{5}+8 x^{4}-49 x^{3}-308 x^{2}+708 x+2160=0$
$>P=[1,8,-49,-308,708,2160]$
$\begin{array}{rllll}\mathrm{P}= & 1 & 8 & -49 & -308 \\ \gg & \operatorname{roots}(\mathrm{P}) & & & 2160 \\ & -9.0000 & & & \\ & -6.0000 & & & \\ & 5.0000 & & & \\ & \mathbf{4 . 0 0 0 0} & & \end{array}$
2) Use Matlab to multiply our the following polynomials.
a) $\quad(x-4)(x+3)(x-10)(x+9)=0$
meaning

$$
x^{4}-2 x^{3}-101 x^{2}+102 x+1080=0
$$

b) $\quad(x-3)(x-4)(x-5)(x-6)(x+1)(x+4)=0$

$$
\gg \quad R=[3,4,5,6,-1,-4]
$$

$$
\begin{array}{lllllll}
R= & 3 & 4 & 5 & 6 & -1 & -4
\end{array}
$$

>> P = poly (R)

$$
\begin{array}{lllllll}
P=1 & -13 & 33 & 181 & -874 & 432 & 1440
\end{array}
$$

>> roots (P)

$$
-4.0000
$$

$$
6.0000
$$

$$
5.0000
$$

$$
4.0000
$$

$$
3.0000
$$

$$
-1.0000
$$

>>
meaning

$$
x^{6}-13 x^{5}+33 x^{4}+181 x^{3}-874 x^{2}+432 x+1440=0
$$

$$
\begin{aligned}
& \text { >> } R=[4,-3,10,-9] \\
& \begin{array}{lllll}
R & 4 & -3 & 10 & -9
\end{array} \\
& \text { >> } P=\operatorname{poly}(R) \\
& \begin{array}{llllll}
P= & 1 & -2 & -101 & 102 & 1080
\end{array} \\
& \text { >> roots(P) } \\
& 10.0000 \\
& \text {-9. } 0000 \\
& 4.0000 \\
& -3.0000
\end{aligned}
$$

Graphing in Matlab

3) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

$$
\begin{aligned}
& y=\sin (x) \cdot \cos (3 x) \\
& y=\left(\frac{x(x-2)}{10}\right)
\end{aligned}
$$

In Matlab

```
>> x = [-4:0.01:4]';
>> y1 = sin(x) .* cos(3*x);
>> y2 = x .* (x-2)/10;
>> plot(x,y1,'b',x,y2,'r');
>> xlabel('x');
>> ylabel('y');
```

From the graph, there are six solutions: $x=\{-1.4,-0.6,-0.1,0.6,1.6,2.5, \quad)$

$$
\left.\begin{array}{cc}
\gg & y 3=x . * \\
\gg & {[x, y 3]}
\end{array}\right] / 10 ;
$$

4) Plot the two functions in Matlab and determine all solutions in the range of $-4<x<+4$

```
        y=(x-2)(x)(x+2)
        y=
>> x = [-4:0.01:4]';
>> y1 = (x-2) .* (x) .* (x+2);
>> y2 = x/2 - 2;
>> plot(x,y1,x,y2);
>> x3 = [-2.4,0.5,1.8]';
>> y3 = x3/2 - 2;
>> plot(x,y1,'b',x,y2,'r',x3,y3,'r.')
>> xlabel('x');
>> ylabel('y');
>> [x3,y3]
```

x	y
-2.4000	-3.2000
0.5000	-1.7500
1.8000	-1.1000

Monte-Carlo Simulations:

Two teams, A and B , are playing a game. Team A has a

- 50% chance of winning any given game (+1 point)
- 20% chance of a tie ($+1 / 2$ point), and
- 30% chance of a loss (+0 points)

5) For Loops: Suppose the two teams play a 9-game match. The match winner is whoever has 5 wins or more. Determine the probability that

- Team A wins the match (5 or more points),
- There is a tie (Team A has 4.5 points), and
- Team A loses (4 points or less)
matlab code:

```
Wins = 0;
Ties = 0;
Loss = 0;
for i=1:1e5
    A = 0;
    for n=1:9
        R = rand;
        if(R < 0.5) A = A + 1;
        elseif(R < 0.7) A = A + 0.5;
        else A = A + 0;
        end
    end
    if(A > 4.5) Wins = Wins + 1;
    elseif(A == 4.5) Ties = Ties + 1;
    else Loss = Loss + 1;
    end
end
disp([Wins, Ties, Loss]/1e5)
```

Results

wins	ties	losses
0.6923	0.1158	0.1920
0.6957	0.1139	0.1903
0.6954	0.1135	0.1911
0.6929	0.1139	0.1933
0.6947	0.1132	0.1921

It's about

- A 69% chance that A wins
- 11% chance of a tie
- 19% chance B wins

6) While Loops: Suppose the two teams play until one team is up by 2 points. Determine the probability that team A will win the match.
hint: use a while-loop and keep looping until one team is up by 2 games.
Code:
```
Wins = 0;
Loss = 0;
for i=1:1e5
    A = 0;
    while(abs(A) < 2)
        R = rand;
            if(R < 0.5) A = A + 1;
            elseif(R < 0.7) A = A + 0;
            else A = A - 1;
            end
    end
    if(A > 0) Wins = Wins + 1;
    else Loss = Loss + 1;
    end
end
disp([Wins, Loss]/1e5)
```

Results

Wins	Losses
0.7352	0.2648
0.7345	0.2655
0.7349	0.2651
0.7391	0.2609
0.7343	0.2657
0.7339	0.2661
0.7369	0.2631
0.7330	0.2670
0.7341	0.2659

There is about a

- 73% chance that A wins
- 26% chance that B wins
- 0% chance of a tie

7) Gauss' Dilema: Play the following game 1000 times. (i.e. use Matlab and a for loop along with a while loop)

- It costs $\$ 20$ to play. The pot starts at $\$ 1$.
- Flip a coin. If you get a heads, the pot doubles. If you get a tails, the game is over and you collect the money in the pot.
- Keep flipping until you get a tails.

How much money do you expect to win (or lose) each time you play this game?

Code:

```
Winnings = 0;
for i=1:1e3
    Pot = 1;
    while(rand < 0.5)
            Pot = Pot * 2;
            end
    Winnings = Winnings + Pot - 20;
end
disp(Winnings)
```

Results:

$$
\begin{array}{r}
-1635 \\
1195 \\
-12492 \\
-6053 \\
-14601 \\
-13066 \\
-15663 \\
-14667 \\
-14030 \\
-12704 \\
-13415 \\
-15238 \\
-14886 \\
-4447 \\
-12455
\end{array}
$$

On average, I'm losing about \$13,000 every 1000 times I play this game

- But, the mathematics say I should win an infinite amount each time I play (on average)
- Hence the name Gauss' Dilema

Dice:

8a) Determine the probability distribution for the following:

- Roll five 6 -sided dice and five 8 -sided dice.
- The total is the sum of all of the dice.

$$
\mathrm{Y}=5 \mathrm{~d} 6+5 \mathrm{~d} 8
$$

$8 \mathrm{~b})$ What is the probability of the total being 50 ?
$8 \mathrm{c})$ What is the probability of the total being 50 or more?

Code:

```
    B = 0;
    C = 0;
    for i = 1:1e5
        d6 = ceil(6*rand(1,5));
        d8 = ceil(8*rand(1,5));
        Y = sum(d6) + sum(d8);
        if(Y == 50) B = B + 1; end
        if(Y >= 50) C = C + 1; end
    end
    disp([B,C]/1e5)
```

Results

$=50$	$>=50$
0.0187	0.0684
0.0198	0.0706
0.0190	0.0697
0.0186	0.0691
0.0186	0.0685
0.0192	0.0687
0.0193	0.0694

There is about a

- 1.9% chance the sum will be 50
- 6.9% chance the sum will be 50 or more

9) Two people are playing a dice game:

- Player A rolls five 6 -sided and five 8 -sided dice and takes the total $(5 \mathrm{~d} 6+5 \mathrm{~d} 8)$
- Player B rolls two 100 -sided dice and takes the lower of the two numbers.
- Whoever has the highest score wins.

Determine the probability that

- A wins
- There is a tie, and
- B wins

Code:

```
Wins = 0;
Ties = 0;
Loss = 0;
for i = 1:1e5
    d6 = ceil(6*rand(1,5));
    d8 = ceil(8*rand(1,5));
    d100 = ceil(100*rand(1,2));
    A = sum(d6) + sum(d8);
    B = min(d100);
    if(A > B) Wins = Wins + 1; end
    if(A == B) Ties = Ties + 1; end
    if(A < B) Loss = Loss + 1; end
end
disp([Wins, Ties, Loss]/le5)
```

Results:

A wins	Tie	B wins
0.6220	0.0123	0.3657
0.6192	0.0129	0.3679
0.6246	0.0120	0.3634
0.6204	0.0122	0.3674
0.6243	0.0123	0.3635
0.6218	0.0126	0.3656
0.6231	0.0123	0.3646

There is about a

- 62% chance that A will win,
- 1.2% chance of a tie, and
- 36% chance B wins

