ECE 111 - Homework \#12

Week \#12: ECE 341 Random Processes. Due 11am November 15th

Chi-Squared Tests

Problem 1: The following Matlab code generates 240 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:240
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

Problem 2: The following Matlab code generates 240 rolls of a loaded six-sided die (5\% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:240
    if(rand < 0.05)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

Am I Psychic?

Problem \#3: Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

Normal Approximation

The mean and standard deviation for a fair 6 -sided die and 4 -sided die are:

$$
\begin{array}{lll}
\mu_{d 4}=2.5 & \mu_{d 6}=3.5 & \mu_{d 8}=4.5 \\
\sigma_{d 4}=1.118 & \sigma_{d 6}=1.7078 & \sigma_{d 10}=2.2913
\end{array}
$$

(continued back side)

Problem 4: Let Y be the sum of rolling two 4 -sided dice (2d4) plus three 6 -sided dice (3d6) plus four 8 -sided dice.

$$
\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?
b) Using a normal approximation, what is the 90% confidence interval for Y ?
c) Using a normal approximation, what is the probability that the sum the dice will be more than 39.5 ?

Problem 5: Check your answer using a Monte-Carlo simulation in Matlab with 100,000 rolls:

- LEFT and RIGHT are the left and right bounds found in problem 4b

```
N = 0;
L = 0;
R = 0;
for i=1:1e5
    d4 = ceil( 4*rand(2,1) );
    d6 = ceil( 6*rand (3,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    if(Y > 39.5) N = N + 1; end
    if(Y < LEFT) L = L + 1; end
    if(Y > RIGHT) R = R + 1; end
    end
[N, L, R] / 1e5
```


t-Tests

Problem 6: Using Matlab, determine four values for Y

$$
\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

6a) From this, determine the mean and standard deviation of your data set.

```
DATA = [];
for i=1:5
    d4 = ceil( 4*rand(2,1) );
    d6 = ceil( 6*rand(3,1) );
    d8 = ceil( 8*rand(4,1) );
    Y = sum(d4) + sum(d6) + sum(d8);
    DATA = [DATA, Y];
    end
x = mean(DATA)
s = std(DATA)
```

6b) Use a t-test to determine

- The 90% confidence interval
- The probabillity of scoring more than 39.5 points

Problem 7: Using Matlab, determine ten values for Y

$$
\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

7a) From this, determine the mean and standard deviation of your data set.
7b) Use a t-test to determine

- The 90% confidence interval
- The probabillity of scoring more than 39.5 points

