ECE 111 - Homework \#11

Week \#11 - ECE 343 Signals- Due 8am Tuesday, November 8th

Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=\max (0,5 \sin (t)-3)
$$

or in Matlab:

```
t = [0:0.001:2*pi]';
x = max(0, 5*sin(t) - 3);
plot(t,x)
```


$\mathrm{x}(\mathrm{t}) \quad$ Note that $\mathrm{x}(\mathrm{t})$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.

Superposition

3) Assume X and Y are related by

$$
Y=\left(\frac{1 / 2}{s^{2}+s+1 / 2}\right) X
$$

3a) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$
3b) Plot $x(t)$ and its Fourier approximation taken out to $3 \mathrm{rad} / \mathrm{sec}$
4) Determine the gain of this filter at each frequency present in problem \#2 (i.e. $0,1,2,3 \mathrm{rad} / \mathrm{sec}$)

- note: You should get a complex number for the gain at each frequency

5a) Determine the phasor representation for $\mathrm{Y}(\mathrm{jw})$ at each frequency.

- note: You should get a complex number for Y - the phasor representation for $y(t)$ at $0,1,2$, and 3 $\mathrm{rad} / \mathrm{sec}$

5b) From this, determine $y(t)$
6) $\operatorname{Plot} x(t)$ and $y(t)$.

