ECE 111 - Homework \#3

Week \#3: Linear Algebra. Due 11am Tuesday, September 13th

\mathbf{N} equations \& N unknowns

1) Solve for $\{x, y\}$

$$
\begin{aligned}
& 20 x+24 y=29 \\
& 5 x+15 y=11
\end{aligned}
$$

2) Solve for $\{x, y, z\}$

$$
\begin{aligned}
& 4 x+17 y-18 z=1 \\
& 3 x+2 y-14 z=19 \\
& -16 x+12 y=6
\end{aligned}
$$

3) Solve for $\{a, b, c, d\}$

$$
\begin{aligned}
& 13 a+13 b+8 c=2 \\
& 12 b+5 c+10 d=20 \\
& 7 a+9 b+d=16 \\
& a+2 b+3 c+4 d=0
\end{aligned}
$$

Global CO2 Levels

Problem 4: CO2 Levels. The CO2 levels measured at Mauna Loa observatory for the past 52 years are:

https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.txt http://www.bisonacademy.com/ECE111/Code/CO2\ Levels.txt

Problem 4) Determine a parabolic curve fit for this data in the form of

$$
C O_{2} \approx a y^{2}+b y+c
$$

where 'y' is the year. From this data, when do you predict that we will hit

- 400ppm?
- 2000 ppm of CO2? (the same as what was observed during the Permian extinction)

Fargo Temperatures

5) The average temperature in June for Fargo, ND is as follows:

http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt
5a) Determine a curve fit of the form of $T=a y+b$
5b) How much has Fargo warmed up over the past 80 years?
5c) What will the average temperature in Fargo be in June in the year 2050?

Problem 6-7) Sea Ice: The area covered by sea ice is recored by the National Snow and Ice Data Center:

6) Approximate this data from the years 1979-2022 with a line

$$
\text { Area } \approx a y+b
$$

From this curve fit, when do you expect the Arctic to be ice free? (First time in 5 million years)
7) Approximate this data with a parabolic curve fit:

$$
\text { Area } \approx a y^{2}+b y+c
$$

From this curve fit, when do you expect the Arctic to be ice free?

Problem 8-9: World Temperatures. NASA Goddard has been keep records since 1880 (139 years of data).

http://www.bisonacademy.com/ECE111/Code/Temperature\ Deviation.txt
8) Determine a least-squares curve fit for this data from the year 1880-1920 in the form of

$$
\delta T=a y+b
$$

Based upon this data, what should the temperature deviation be in the year 2022 ?
9) Determine a least-squares curve fit for this data from the year 1965-2022 in the form of

$$
\delta T \approx a y^{2}+b y+c
$$

Based upon this data, predict when we will see a 10 degree temperature increase if nothing changes?
10) What does a temperature rise of 10 degrees mean for the planet?

