ECE 111 - Homework \#12

Week \#12: ECE 341 Random Processes. Due November 23rd
Please submit as a Word or pdf file to BlackBoard or email to Jacob_Glower@yahoo.com with header ECE 111 HW\#12 www.BisonAcademy.com

Chi-Squared Tests

Problem 1: The following Matlab code generates 90 random die rolls for a six sided die

```
RESULT = zeros(1,6);
for i=1:90
    D6 = ceil( 6*rand );
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Determine whether this is a fair or loaded die using a Chi-Squared test.

Running the code (results vary - it's random)
RESULT =

13	14	13	13	20	17

Put this into a table:

die roll	p	np	N	chi-squared
1	$1 / 6$	15	13	0.27
2	$1 / 6$	15	14	0.07
3	$1 / 6$	15	13	0.27
4	$1 / 6$	15	13	0.27
5	$1 / 6$	15	20	1.67
6	$1 / 6$	15	17	0.27

From StatTrek, a chi-squared total of 2.8 with 5 degrees of freedom corresponds to a probability of 0.27
There is a $\mathbf{2 7 \%}$ chance that the die is loaded (no conclusion)

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text
boxes.
- Click the Calculate button to compute values for the other text boxes.

Chii-square crilical value (CV)	\square
Degrees of freedom	\square
$P\left(X^{2}<2.8\right)$	2.8
$P\left(X^{2}>2.8\right)$	0.27

Problem 2: The following Matlab code generates 90 rolls of a loaded six-sided die (12% of the time, you roll a 6):

```
RESULT = zeros(1,6);
for i=1:90
    if(rand < 0.12)
        D6 = 6;
    else
        D6 = ceil( 6*rand );
        end
    RESULT(D6) = RESULT(D6) + 1;
    end
RESULT
```

Running the code gives the following results (vary with each trial)

RESULT $=$	13	14	16	13	12	22

Putting this into a table:

die roll	p	np	N	chi-squared
1	$1 / 6$	15	13	0.27
2	$1 / 6$	15	14	0.07
3	$1 / 6$	15	16	0.07
4	$1 / 6$	15	13	0.27
5	$1 / 6$	15	12	0.6
6	$1 / 6$	15	22	3.27

From StatTrek, a chi-squared critical value of 4.53 with 5 degrees of freedom corresponds to a probability of 0.52
There is a $\mathbf{5 2 \%}$ chance the die is loaded (no conclusion)
note: It is very hard to tell if a die is loaded only 12% of the time with only 90 rolls.

Am I Psychic?

Problem \#3: Shuffle a deck of 52 playing cards and place it face down on a table.

- Predict the suit of the top card then reveal it. If correct, place the card in one pile (correct). If incorrect, place it in another pile.
- Repeat for all 52 cards.

Use a chi-squared test to test the hypothesis that you're just guessing (probability of being correct is 25%)

Flipping 52 cards resulted in

- 11 times correct
- 41 times incorrect

Checking if this is random guessing (25% chance of getting it right)

prediction	p	np	N	chi-squared
correct	$1 / 4$	13	11	0.31
incorrect	$3 / 4$	39	41	0.1

From StatTrek, a chi-squared critical value of 0.41 with 1 degree of freedom gives a probability of 0.48

There is a $\mathbf{4 8 \%}$ chance that I'm not guessing (no conclusion)

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text
boxes.
- Click the Calculate button to compute values for the other text boxes.
Chi-square critical value (CV)
Degrees of freedom \square $P\left(X^{2}<0.41\right)$ \square $P\left(X^{2}>0.41\right)$ \square

Normal Approximation

The mean and standard deviation for a fair 6 -sided die and 8 -sided die are:

$$
\begin{array}{ll}
\mu_{d 6}=3.5 & \mu_{d 8}=4.5 \\
\sigma_{d 6}=1.7078 & \sigma_{d 8}=2.291
\end{array}
$$

Problem 4: Let Y be the sum of rolling five 6 -sided dice (5d6) plus five 8 -sided dice (5 d 8).

$$
\mathrm{Y}=5 \mathrm{~d} 6+5 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?

The means add

$$
\begin{aligned}
& \mu=5 \cdot 3.5+5 \cdot 4.5 \\
& \mu=40
\end{aligned}
$$

The variance also adds

$$
\begin{aligned}
& \sigma^{2}=5 \cdot 1.7078^{2}+5 \cdot 2.291^{2} \\
& \sigma^{2}=40.8263
\end{aligned}
$$

The standard deviation is then

$$
\sigma=\sqrt{\sigma^{2}}=6.3895
$$

The pdf then looks like the following:

```
>> s1 = [-4:0.01:4]';
>> p = exp(-s1.^2 / 2);
>> plot(s1*6.3895+40,p)
```


b) Using a normal approximation, what is the 90% confidence interval for Y ?
5% tails corresponds to a z -score of 1.645 . The 90% confidence interval is then

$$
\begin{array}{ll}
\mu-1.645 \sigma<\text { sum }<\mu+1.645 \sigma & \mathrm{p}=0.9 \\
29.489<\text { sum }<50.511 &
\end{array}
$$

c) Using a normal approximation, what is the probability that the sum the dice will be more than 54.5 ? The z -score is

$$
z=\left(\frac{54.5-\mu}{\sigma}\right)=\left(\frac{54.5-40}{6.3895}\right)=2.269
$$

From StatTrek, a z-score of 2.269 corresponds to a probability of 1.2%

Problem 5: Check your answer using a Monte-Carlo simulation in Matlab with 100,000 rolls:

```
N = 0;
for i=1:1e5
    Y = sum( ceil( 6*rand(5,1) ) ) + sum( ceil( 8*rand(5,1) ) );
    if(Y > 54.5)
        N = N + 1;
        end
    end
N / 1e5
ans =
    0.0106
```

A Monte-Carlo run gives a probability of 1.06% chance of rolling more than 54.5
A normal approximation gives a probability of 1.2%

t-Tests

Problem 6: Using Matlab, cast five level-7 fireballs (the sum of seven 6-sided dice, or 7d6)

```
damage = [];
for i=1:5
    x = sum( ceil( 6*rand(7,1) ) );
    damage = [damage ; x];
    end
```

From this, determine the mean and standard deviation of your data set.

Running the program gives

```
damage =
    28
    31
    23
    18
    24
```

Find the mean and standard deviation

```
>> x = mean(damage)
x = 24.8000
>> s = std(damage)
s = 4.9699
>> s1 = [-4:0.01:4]';
>> p = exp(-s1.^2 / 2);
>> plot(s1*4.9699+24.8,p)
```


Problem 7: Use a t-test to determine

- The 90% confidence interval for a level 7 fireball.
- The probabillity of doing 35 damage or more with a level-7 fireball

From StatTrek, a t-distribution

- with 4 degrees of freedom (sample size of 5)
- with 5% tails (90% in the middle)
gives a z--score of 2.132

The 90% confidence interval is then

$$
\bar{x}-2.132 s<\text { sum }<\bar{x}+2.132 s
$$

14.2042 < sum <36.3302

To find the probabiliy of doing 35 damage or more, find the t-score for 34.5

$$
t=\left(\frac{34.5-\bar{x}}{s}\right)=\left(\frac{34.5-24.80}{4.9699}\right)=1.9517
$$

Using StatTrek, a t-score of 1.9517 corresponds to a probability of 0.9386
There is a $\mathbf{9 3 . 8 6 \%}$ chance or dong less than 35 damage with a level-7 fireball
There is a 6.14% chance of doing 35 or more damage with a level-7 fireball

Problem 8) Check your answer using a Monte-Carlo simulation in Matlab by casting 100,000 level-7 fireballs:

```
Nx = 0;
Ny = 0;
for i=1:1e5
        damage = sum( ceil( 6*rand(7,1) ) );
        if( (damage > 14.2)*(damage < 36.3) )
            Nx = NX + 1;
            end
        if( damage >= 35)
            Ny = Ny + 1;
            end
    end
[Nx,Ny] / 1e5
ans =
    0.9856 0.0122
```

- The actual probability of doing damage in the range of $(14.2,36.3)$ is 98.56% (vs. 90%)
- The actual probability of doing 35 or more damage is 1.22% (vs. 6.14%)

These are different due to a small sample size (5 fireballs)

