ECE 111 - Homework \#11

Week \#11-ECE 343 Signals

Problem 1-5) Let $\mathrm{x}(\mathrm{t})$ be a function which is periodic in 2π

$$
x(t)=x(t+2 \pi)
$$

Over the interval $(0,2 \pi) x(t)$ is

$$
x(t)=6 t \cdot e^{-2 t}
$$

or in Matlab:

```
t = [0:0.001:2*pi]';
x = 6 * t .* exp(-2*t);
plot(t,x)
```


$x(t) \quad$ Note that $x(t)$ repeats repeats every 2π seconds

Curve Fitting with a power series:

1) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t) \approx a+b t+c t^{2}+d t^{3}
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.
note: You can curve fit anything. This solution doesn't help solve for $y(t)$ in problem \#3 since the basis isn't in the form of sinusoids.

```
>> t = [0:0.001:2*pi]';
x = 6 * t .* exp (-2*t);
plot(t,x)
>>
>>B}=[t.^^0, t, t.^ 2, t.^^3]
>> A}=inv(\mp@subsup{B}{}{\prime}*B)*\mp@subsup{B}{}{\prime}*
A =
    1.0319
    -0.4275
        0.0341
        0.0016
>> plot(t,x,'b',t, B*A,'r');
>> xlabel('Time (t)');
>>
```


$x(t)$ (blue) and its cubic curve fit (red)

Curve Fitting using a Fourier Series

2) Using least squares, approximate $x(t)$ over the interval $(0,2 \pi)$ as

$$
x(t)=a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)+a_{3} \cos (3 t)+b_{3} \sin (3 t)
$$

Plot $\mathrm{x}(\mathrm{t})$ along with it's approximation.
note: This solution *does* help solve for $y(t)$. Phasor analysis only works if the input is made up of sinusoids. $\quad x(t)$ is now expressed in terms of sinusoids - meaning you can now proceed with problem \#3.

```
>> B = [t.^0, cos(t), sin(t), cos(2*t), sin(2*t), cos(3*t), sin(3*t)];
>> A = inv(B'*B)* B'*x
a0 0.2387
a1 0.2291
b1 0.3056
a2 -0.0001
b2 0.2387
a3 -0.0566
b3 0.1356
>> plot(t,x,'b',t,B*A,'r');
>>
```


Superposition

3) Assume X and Y are related by

$$
Y=\left(\frac{1}{s^{2}+1.5 s+1}\right) X
$$

3a) Determine $x(t)$ in terms of its Fourier Transform out to $3 \mathrm{rad} / \mathrm{sec}$
From problem \#2

a0	0.2387
a1	0.2291
b1	0.3056
a2	-0.0001
b2	0.2387
a3	-0.0566
b3	0.1356

The Fourier coefficients (using the complex Fourier transform) are

```
>> x0 = mean(x)
x0 = 0.2387
>> x1 = 2*mean(x .* exp(-j*t))
x1 = 0.2291-0.3055i
>> x2 = 2*mean(x .* exp(-2*j*t))
x2 = -0.0000-0.2387i
>> x3 = 2*mean(x .* exp (-3*j*t))
x3 = -0.0565 - 0.1356i
```

The Fourier coefficients are identical to what we got with a least-squares curve fit.

Fourier Trransforms is nothing more than a curve fit where you use sine waves for the basis.

3b) Plot $x(t)$ and its Fourier approximation taken out to $3 \mathrm{rad} / \mathrm{sec}$

Same results as problem \#2 so same plot
4) Determine the gain of this filter at each frequency present in problem \#2 (i.e. $0,1,2,3 \mathrm{rad} / \mathrm{sec}$)

- note: You should get a complex number for the gain at each frequency

```
DC
>> s = 0;
>> GO = 1 / ( \(\left.s^{\wedge} 2+1.5 * s+1\right)\)
G0 = \(\quad 1\)
```

$1 \mathrm{rad} / \mathrm{sec}$

```
>> s = j*1;
>> G1 = 1 / ( s^2 + 1.5*s + 1)
G1 = 0 - 0.6667i
```

$2 \mathrm{rad} / \mathrm{sec}$
>> s = j*2;
>> G2 = 1 / (s^2 + 1.5*s + 1)
G2 = -0.1667 - 0.1667i
$3 \mathrm{rad} / \mathrm{sec}$

```
>> s = j*3;
>>G3 = 1 / ( s^2 + 1.5*s + 1)
G3 = -0.0950 - 0.0534i
```

Note: This is a filter. The gain changes with frequency.

5a) Determine the phasor representation for $\mathrm{Y}(\mathrm{jw})$ at each frequency.

- note: You should get a complex number for Y - the phasor representation for $y(t)$ at $0,1,2$, and 3 rad/sec
>> $y 0=G 0 * x 0$
$\mathrm{y} 0=0.2387$
>> $y 1=G 1 * x 1$
$\mathrm{y} 1=-0.2037-0.1528 \mathrm{i}$
>> $y 2=G 2 * x 2$
$y^{2}=-0.0398+0.0398 i$
>> $y 3=G 3 * x 3$
$y 3=-0.0019+0.0159 i$

5b) From this, determine $y(t)$

- convert from phasor form to the time domain
- real means cosine
- imag means minus sine

```
y(t) = 0.2287
    - 0.2037 cos(t) + 0.1528 sin(t)
    - 0.0398 cos(2t) - 0.0398 sin(2t)
    - 0.0019 cos(3t) - 0.0159 sin(3t)
```

6) Plot $x(t)$ and $y(t)$.
```
y = 0.2287-0.2037* cos(t) + 0.1528*sin(t)
    - 0.0398*\operatorname{cos}(2*t) - 0.0398*sin(2*t)
    - 0.0019*\operatorname{cos}(3*t) - 0.0159*sin(3*t)
plot(t,x,'b',t,y,'r');
```


$x(t)$ (blue) and $y(t)(r e d)$

Notes:

- In theory, you need to go out to infinity. In practice, $\mathrm{y}(\mathrm{t})$ is almost zero at the 3 rd harmonic. Truncating the series at $3 \mathrm{rad} / \mathrm{sec}$ is fairly accurate.
- This is actually a really hard problem: find the output of a filter with an arbitrary (i.e. non-sinusoidal) input. Fourier Transforms allow you to solve this type of problem.

