ECE 111 - Homework \#10

ECE 343 Signals \& Systems

1) A filter has the following transfer function

$$
Y=\left(\frac{2 s+50}{s^{2}+13 s+40}\right) X
$$

1a) What is the differential equation relating X and Y ?
Cross multiply

$$
\left(s^{2}+13 s+40\right) Y=(2 s+50) X
$$

sY means the derivative of y or y^{\prime}

$$
y^{\prime \prime}+13 y^{\prime}+40 y=2 x^{\prime}+50 x
$$

1b) Find $y(t)$ assuming $x(t)=4$
At DC, $s=0$

$$
\begin{align*}
& Y=\left(\frac{2 s+50}{s^{2}+13 s+40}\right)_{s=0} . \tag{4}\\
& Y=5.00
\end{align*}
$$

meaning

$$
\mathbf{y}(\mathrm{t})=\mathbf{5 . 0 0}
$$

1c) Find $y(t)$ assuming $x(t)=4 \cos (6 t)$
Using phasor notation

$$
\begin{aligned}
& s=j 6 \\
& X=4+j 0 \quad 4 \text { cosine }+0 \text { sine } \\
& Y=\left(\frac{2 s+50}{s^{2}+13 s+40}\right)_{s=j 6} \cdot(4+j 0) \\
& Y=0.7449-j 2.5259
\end{aligned}
$$

meaning

$$
y(t)=0.7449 \cos (6 t)+2.5259 \sin (6 t)
$$

2) Plot the gain vs. frequency for this filter from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

$$
Y=\left(\frac{2 s+50}{s^{2}+13 s+40}\right) X
$$

>> w = [0:0.1:50]';
>> s = j*w;
>> Gs $=(2 * s+50) . /(s . \wedge 2+13 * s+40)$;
>> plot(w, abs (Gs))
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
>>

Problem 3-5) Design a filter of the following form so that the gain matches the graph below:

$$
G(s)=\left(\frac{a(s+b)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right)
$$

3) Write an m-file, cost.m, which

- Is passed a 5-element array, z , with each element representing (a, b, c, d, e)
- Computes the gain, $\mathrm{G}(\mathrm{s})$ for this value of (a, b, c, d, e)
- Computes the difference between the gain, G, and the target (above), and
- Returns the sum-squared error in the gain

Code:

```
function [ J ] = costf( z )
    a = z(1);
    b = z(2);
    c = z(3);
    d = z(4);
    e = z(5);
    f = z(6);
    w = [0:0.01:10]';
    s = j*w;
    Gideal = (0.4*W + 0.2).* (w<2) + (1.3 -0.15*W).* (w>=2).* (w<6);
    G = a*(s+b) ./ ( (s.^2 + C*s + d) .* (s.^2 + e*s + f ) );
    G = abs(G);
    E = abs(Gideal) - abs(G);
    J = sum(E .^ 2);
    plot(w,Gideal,w,abs(G),'r');
    ylim([0,1.4]);
    pause(0.01);
end
```

calling:

```
>> costf([10,2,3,4,5,6])
    145.2195
```


4) Use your m-file to determine how 'good' the following filter is:

$$
G(s)=\left(\frac{a(s+b)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right)=\left(\frac{20(s+1)}{\left(s^{2}+2 s+5\right)\left(s^{2}+2 s+17\right)}\right)
$$

```
>> costf([20,1,2,5,2,17])
ans =
```

 16.0810

5) Use fminsearch() to find the 'best' filter of the form

$$
\begin{aligned}
& G(s)=\left(\frac{a(s+b)}{\left(s^{2}+c s+d\right)\left(s^{2}+e s+f\right)}\right) \\
& \text { >> [Z,e] = fminsearch('costf', [20,1,2,5,2,17]) } \\
& \text { Z = } \\
& \begin{array}{llllll}
21.9001 & 1.5453 & 1.5031 & 4.2629 & 1.9397 & 21.8389
\end{array} \\
& \text { e = } \\
& 6.6248
\end{aligned}
$$

5a) Give the resulting (a, b, c, d, e, f)
Z =
a
21.9001
b
1.5453
c
1.5031
d
4.2629
$\begin{array}{cc}\mathrm{e} & \mathrm{f} \\ 1.9397 & 21.8389\end{array}$

5b) Give the resulting filter, and

$$
G(s)=\left(\frac{21.9(s+1.5453)}{\left(s^{2}+1.6031 s+4.2629\right)\left(s^{2}+1.9397 s+21.8389\right)}\right)
$$

5c) Plot the 'optimal' filter's gain vs. frequency

