## ECE 111 - Homework \#8

Week \#8: ECE 351 Electromagnetics

1) Assume the current flowing through a one Henry inductor is shown below. Sketch the voltage.

$$
V=L \frac{d I}{d t}
$$

The voltage is the derivative of the current (inductors are differentiators)


## Problem 2-3) 4-Node RLC Circuit



$$
\mathrm{R}=200 \Omega, \mathrm{C}=0.05 \mathrm{~F}, \mathrm{~L}=0.4 \mathrm{H} . \text { Repeat for } 30 \text { nodes for problems 4-6 }
$$

2) Write the dynamic equations for the following 4 -stage RLC circuit. (i.e. write the node equations) Write the node equation at V1. The other nodes will be similar

$$
\begin{aligned}
& I_{1}=I_{a}+I_{b}+I_{c} \\
& I_{1}=C V_{1}^{\prime}=I_{a}+I_{b}+\left(\frac{0-V_{1}}{R}\right)
\end{aligned}
$$

For inductors

$$
\begin{aligned}
& V=L \frac{d I}{d t} \\
& V_{0}-V_{1}=L I_{a}^{\prime} \\
& V_{2}-V_{1}=L I_{b}^{\prime}
\end{aligned}
$$

Differentiate the second equation (for I1)

$$
C V_{1}^{\prime \prime}=I_{a}^{\prime}+I_{b}^{\prime}-\left(\frac{1}{R}\right) V_{1}^{\prime}
$$

Substitute for I'

$$
C V_{1}^{\prime \prime}=\left(\frac{V_{0}-V_{1}}{L}\right)+\left(\frac{V_{2}-V_{1}}{L}\right)-\left(\frac{1}{R}\right) V_{1}^{\prime}
$$

Group terms

$$
V_{1}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{0}-\left(\frac{2}{L C}\right) V_{1}+\left(\frac{1}{L C}\right) V_{2}-\left(\frac{1}{R C}\right) V_{1}^{\prime}
$$

Ditto for nodes 2 and 3. Node \#4 is slightly different

$$
\begin{aligned}
& V_{2}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{1}-\left(\frac{2}{L C}\right) V_{2}+\left(\frac{1}{L C}\right) V_{3}-\left(\frac{1}{R C}\right) V_{2}^{\prime} \\
& V_{3}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{2}-\left(\frac{2}{L C}\right) V_{3}+\left(\frac{1}{L C}\right) V_{4}-\left(\frac{1}{R C}\right) V_{3}^{\prime} \\
& V_{4}^{\prime \prime}=\left(\frac{1}{L C}\right) V_{3}-\left(\frac{1}{L C}\right) V_{4}-\left(\frac{1}{R C}\right) V_{4}^{\prime}
\end{aligned}
$$

Plugging in numbers

$$
\begin{aligned}
& V_{1}^{\prime \prime}=50 V_{0}-100 V_{1}+50 V_{2}-0.1 V_{1}^{\prime} \\
& V_{2}^{\prime \prime}=50 V_{1}-100 V_{2}+50 V_{3}-0.1 V_{2}^{\prime} \\
& V_{3}^{\prime \prime}=50 V_{2}-100 V_{3}+50 V_{4}-0.1 V_{3}^{\prime} \\
& V_{4}^{\prime \prime}=50 V_{3}-50 V_{4}-0.1 V_{4}^{\prime}
\end{aligned}
$$

3) Assume Vin $=10 \mathrm{~V}$ and the initial conditions are zero $\left(\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{4}=0\right)$. Solve for the voltages at $\mathrm{t}=3$ seconds. Hint: Solve numerically using Matlab


Voltages at $\mathrm{t}=3$ second


Voltages V1 .. V4 vs time

## Code:

```
V0 = 100;
V1 = 0;
V2 = 0;
V3 = 0;
V4 = 0;
dV1 = 0;
dV2 = 0;
dV3 = 0;
dV4 = 0;
V = [];
t = 0;
dt = 0.01;
while(t < 10)
ddV1 = 50*V0 - 100*V1 + 50*V2 - 0.1*dV1;
ddV2 = 50*V1 - 100*V2 + 50*V3 - 0.1*dV2;
ddV3 = 50*V2 - 100*V3 + 50*V4 - 0.1*dV3;
ddV4 = 50*V3 - 50*V4 - 0.1*dV4;
dV1 = dV1 + ddV1*dt;
dV2 = dV2 + ddV2*dt;
dV3 = dV3 + ddV3*dt;
dV4 = dV4 + ddV4*dt;
V1 = V1 + dV1*dt;
V2 = V2 + dV2*dt;
V3 = V3 + dV3*dt;
V4 = V4 + dV4*dt;
t = t + dt;
plot([0,1,2,3, 4],[V0,V1,V2,V3, V4],'.-');
ylim([-300,300]);
clc
disp(t)
pause(0.01);
V = [V; V1, V2, V3, V4];
end
t = [1:length(V)]' * dt;
plot(t,V);
```


## Problem 4-6) 30-Node RLC Circuit ( hint: modify the program Wave.m )

4) Expand the RLC circuit from problem \#2 to 30 nodes. Plot the voltage at $\mathrm{t}=8$ seconds (just after the reflection) for $1 / \mathrm{R}_{30} \mathrm{C}=0.01$


Voltage at $\mathrm{t}=7$ seconds (just after the reflection ) when $1 / \mathrm{R} 30 * \mathrm{C}=0.01$. ( $\mathrm{R} 30=2000$ Ohms)
A positive reflection results from $R$ being too large
5) Plot the voltage at $t=8$ seconds for $1 / R_{30} C=100$


Voltage at $\mathrm{t}=7$ seconds (just after the reflection ) when $1 / \mathrm{R} 30 * \mathrm{C}=100$. ( $\mathrm{R} 30=0.2 \mathrm{Ohms}$ )
A negative reflection results from R being too small
6) Determine experimentally $R_{30}$ so that the reflection is almost zero


Voltage at $\mathrm{t}=7$ seconds (just after the reflection ) when $1 / \mathrm{R} 30 * \mathrm{C}=10$. ( $\mathrm{R} 30=2$ Ohms) No reflection results when R is "just right"

